精英家教网 > 初中数学 > 题目详情

【题目】兄弟两人骑马进城,全程51,马每小时行12,但只能由一个人骑.哥哥每小时步行5,弟弟每小时步行4.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行,而步行者到达此地,再上马前进.若他们早上800出发,并且同时到达城门,那么他们到达的时间是_____.

【答案】15:45或下午3:45

【解析】

设哥哥步行了x千米,则骑马行了51-x千米.而弟弟正好相反,步行了51-x千米,骑马行x千米,依题意,得,解得x=30(千米).所以两人用的时间同为(小时)=7小时45分.早晨8点动身,下午345分到达.

设哥哥步行了x千米,列方程得:

解之得

x=30
(小时)=7小时45分,

早晨8点动身,15:45或下午345分到达.

故答案为:15:45或下午3:45

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P为直径BA延长线上一点,D为圆上一点,BHPDHBD恰好平分∠PBHBH交⊙OC,连接CDOD

1)求证:PD为⊙O的切线;

2)若CD=2,∠ABD=30°,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,ABC为等边三角形,点D为直线BC上一动点(点D不与BC重合).以

AD为边作菱形ADEF,使DAF=60°,连接CF

如图1,当点D在边BC上时,

求证:ADB=AFC请直接判断结论AFC=ACBDAC是否成立;

如图2,当点D在边BC的延长线上时,其他条件不变,结论AFC=ACBDAC是否成立?请写出AFCACBDAC之间存在的数量关系,并写出证明过程;

如图3,当点D在边CB的延长线上时,且点AF分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出AFCACBDAC之间存在的等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂生产一种产品,当生产数量至少为20吨,但不超过60吨时,每吨的成本(万元/吨)与生产数量(吨)之间是一次函数关系,其图像如图所示.

1)求出关于的函数解析式;

2)如果每吨的成本是4.8万元,求该产品的生产数量;

3)当生产这种产品的总成本是200万元时,求该产品的生产数量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是(  )

A. <m<3 B. <m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,直线轴交于点,与轴交于点,经过点的抛物线上有一动点,且点在直线的下方.

1)平移直线经过点,得到直线,点为直线上一个动点,连接,当面积最大时,求的最小值.

2)平移直线经过原点,得到直线,点是直线上一点,且点横坐标为6,点轴上,点轴上,当时,抛物线上是否存在点,使四边形是矩形?如果存在,请求出点的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DEBC于点E.

(1)试判断DE与⊙O的位置关系,并说明理由;

(2)过点DDFAB于点F,若BE=3,DF=3,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数yx24的图象与x轴交于点AB(点A位于点B的左侧),C为顶点.一次函数ymx+2的图象经过点A,与y轴交于点D

1)求直线AD的函数表达式;

2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C.若新抛物线的顶点和原抛物线的顶点的连线CC平行于直线AD,且当1≤x≤3时,新抛物线对应的函数值有最小值为﹣1,求新抛物线对应的函数表达式;

3)如图,连接ACBC,在坐标平面内,直接写出使得ACDEBC相似(其中点A与点E是对应点)的点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表显示了同学们用计算机模拟随机投针实验的某次实验的结果.

投针次数n

1000

2000

3000

4000

5000

10000

20000

针与直线相交的次数m

454

970

1430

1912

2386

4769

9548

针与直线相交的频率p

0.454

0.485

0.4767

0.478

0.4772

0.4769

0.4774

下面有三个推断:

①投掷1000次时,针与直线相交的次数是454,针与直线相交的概率是0.454

②随着实验次数的增加,针与直线相交的频率总在0.477附近,显示出一定的稳定性,可以估计针与直线相交的概率是0.477

③若再次用计算机模拟此实验,则当投掷次数为10000时,针与直线相交的频率一定是0.4769

其中合理的推断的序号是:_____

查看答案和解析>>

同步练习册答案