【题目】如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0)、B(0,6),过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.
(1)求一次函数y=kx+b(k≠0)的解析式;
(2)求直线l的解析式;
【答案】(1)y=x+6;(2)y=x﹣;
【解析】
(1)利用待定系数法求出直线表达式;
(2)记直线l与y轴的交点为D,再证明△OBC∽△OCD可得,由此可得D、C坐标,即可得直线l的解析式.
解:(1)∵一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,
∴
∴
∴一次函数y=kx+b的表达式为y=x+6;
(2)如图,记直线l与y轴的交点为D,
∵BC⊥l,
∴∠BCD=90°=∠BOC,
∴∠OBC+∠OCB=∠OCD+∠OCB,
∴∠OBC=∠OCD,
∵∠BOC=∠COD,
∴△OBC∽△OCD,
∴
∵B(0,6),C(2,0),
∴OB=6,OC=2,
∴
∴OD=
∴D(0,﹣),
∵C(2,0),
∴直线l的解析式为y=x﹣
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中, AB=AC=10,线段BC在轴上,BC=12,点B的坐标为(-3,0),线段AB交轴于点E,过A作AD⊥BC于D,动点P从原点出发,以每秒3个单位的速度沿轴向右运动,设运动的时间为秒.
(1)当△BPE是等腰三角形时,求的值;
(2)若点P运动的同时,△ABC以B为位似中心向右放大,且点C向右运动的速度为每秒2个单位,△ABC放大的同时高AD也随之放大,当以EP为直径的圆与动线段AD所在直线相切时,求的值和此时点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设为三角形三边,为面积,则,这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设(周长的一半),则
(1)尝试验证.这两个公式在表面上形式很不一致,请你用以为三边构成的三角形,分别验证它们的面积值;
(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从或者);
(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,的内切圆半径为,三角形三边长为,仍记,为三角形面积,则.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:线段
(1)请用尺规作一个菱形,使它的两条对角线,.
(注意:不能在已知线段上作图,要求保留作图痕迹,不写作法)
(2)若,,求:菱形的面积?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果点D、E分别在△ABC中的边AB和AC上,那么不能判定DE∥BC的比例式是( )
A. AD:DB=AE:EC B. DE:BC=AD:AB
C. BD:AB=CE:AC D. AB:AC=AD:AE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与轴交点恰好是二次函数与的其中一个交点,已知二次函数图象的对称轴为,并与轴的交点为.
(1)求二次函数的解析式;
(2)设该二次函数与一次函数的另一个交点为点,连接,求三角形的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为( )
A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与x轴交于点A、B(点A在点B的左侧),与y轴交于C.
(1)求点A、B、C的坐标;
(2)若点E与点C关于抛物线的对称轴对称,求梯形AOCE的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com