精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线x轴交于点AB(点A在点B的左侧),与y轴交于C.

1)求点ABC的坐标;

2)若点E与点C关于抛物线的对称轴对称,求梯形AOCE的面积.

【答案】1A-4,0),B2,0),C,0,4);(212

【解析】

1)在抛物线的解析式中,令x=0可以求出点C的坐标,令y=0可以求出AB点的坐标;(2)先求出E点坐标,然后求出OAOCCE的长计算面积即可.

解:(1)当y=0时,-x+4=0,解得x1=4x2=2

A(-40),B20),当x=0时,y=4,∴C04);

2y=x+4=x+12+

∴抛物线y=x+4的对称轴是直线x=1

∴E的坐标为(-24),则OA=4OC=4CE=2

S梯形AOCE=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点的直径的延长线上,点上,且AC=CD∠ACD=120°.

1)求证:的切线;

2)若的半径为2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+bk≠0)的图象与x轴,y轴分别交于A(﹣90)、B06),过点C20)作直线lBC垂直,点E在直线l位于x轴上方的部分.

1)求一次函数y=kx+bk≠0)的解析式;

2)求直线l的解析式;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.

(1)求此抛物线的解析式;

(2)直接写出点C和点D的坐标;

(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校院墙上部是由段形状相同的抛物线形护栏组成的,为了牢固起见,每段护栏需要间隔,加设一根不锈钢支柱,防护栏的最高点据护栏底部(如图),则这条护栏要不锈钢支柱总长度至少为(

A. 50m B. 100m C. 120m D. 160m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=6cmBC=12cm,点P从点A出发,沿AB边向点B1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C2cm/秒的速度移动。如果PQ两点在分别到达B.C两点后就停止移动,回答下列问题:

(1)运动开始后第几秒时, PBQ的面积等于8?

(2)t=时,试判断DPQ的形状。

(3)计算四边形DPBQ的面积,并探索一个与计算结果有关的结论。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分别为△ABC三边的长.

(1)如果方程有两个相等的实数根,试判断△ABC的形状并说明理由;

(2)已知a:b:c=3:4:5,求该一元二次方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

同步练习册答案