【题目】(理解新知)如图①,已知,在内部画射线,得到三个角,分别为,,,若这三个角中有一个角是另外一个角的两倍,则称射线为的“二倍角线”.
(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)
(2)若,射线为的“二倍角线”,则的大小是______;
(解决问题)如图②,己知,射线从出发,以/秒的速度绕点逆时针旋转;射线从出发,以/秒的速度绕点顺时针旋转,射线,同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为秒.
(3)当射线,旋转到同一条直线上时,求的值;
(4)若,,三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出所有可能的值______.
【答案】(1)是;(2)或或;(3)或或;(4)或.
【解析】
(1)若OC为的角平分线,由角平分线的定义可得,由二倍角线的定义可知结论;
(2)根据二倍角线的定义分三种情况求出的大小即可.
(3)当射线,旋转到同一条直线上时,,即或,或OP和OQ重合时,即,用含t的式子表示出OP、OQ旋转的角度代入以上三种情况求解即可;
(4)结合“二倍角线”的定义,根据t的取值范围分,,,4种情况讨论即可.
解:(1)若OC为的角平分线,由角平分线的定义可得,由二倍角线的定义可知一个角的角平分线是这个角的“二倍角线”;
(2)当射线为的“二倍角线”时,有3种情况,
①,;
②,,,;
③,,,
综合上述,的大小为或或;
(3)当射线,旋转到同一条直线上时,有以下3种情况,
①如图
此时,即,解得;
②如图
此时点P和点Q重合,可得,即,解得;
③如图
此时,即,解得,
综合上述,或或;
(4)由题意运动停止时,所以,
①当时,如图,
此时OA为的“二倍角线”,,
即,解得;
②当时,如图,
此时,,所以不存在;
③当时,如图
此时OP为的“二倍角线”,,
即
解得 ;
④当时,如图,
此时,所以不存在;
综上所述,当或时,,,三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”.
科目:初中数学 来源: 题型:
【题目】如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,斜坡AB的坡度,仰角∠CBE=50°.则山峰的高度CF约为( )米.(可用的参考数据:sin50°≈0.8,tan50°≈1.2, )
A. 500 B. 518 C. 530 D. 580
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了科学建设“学生健康成长工程”.随机抽取了部分学生家庭对其家长进行了主题为“周末孩子在家您关心吗?”的问卷调查,将回收的问卷进行分析整理,得到了如下的样本统计表和扇形统计图:
代号 | 情况分类 | 家庭数 |
带孩子玩并且关心其作业完成情况 | 16 | |
只关心其作业完成情况 | b | |
只带孩子玩 | 8 | |
既不带孩子玩也不关心其作业完成情况 | d |
(1)求的值;
(2)该校学生家庭总数为500,学校决定按比例在类家庭中抽取家长组成培训班,其比例为类取20%,类各取60%,请你估计该培训班的家庭数;
(3)若在类家庭中只有一个城镇家庭,其余是农村家庭,请用列举法求出在类中随机抽出2个家庭进行深度采访,其中有一个是城镇家庭的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学课上,老师在屏幕上出示了一个例题:在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,画出图形(如图),给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.
(1)要求同学从这四个等式中选出两个作为已知条件,可判定△ABC是等腰三角形.
请你用序号在横线上写出所有情形.答:
(2)选择第(1)题中的一种情形,说明△ABC是等腰三角形的理由,并写出解题过程.
解:我选择 .
证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的顶点在第一象限,点、的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平面内两点.
(1)请用尺规按下列要求作图,并保留作图痕迹;
①连接;
②在线段的延长线上取点,使;
③在线段的延长线上取点,使.
(2)请求出线段与线段长度之间的数量关系.
(3)如果,则的长度为________,的长度为________,的长度为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:一次函数y=﹣2x+10的图象与反比例函数y=(k>0)的图象相交于A、B两点(A的B的右侧).
(1)当A(4,2)时,求反比例函数的解析式:
(2)当A的横坐标是3,B的横坐标是2时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.
①求C点的坐标;
②求D点的坐标;
③求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是( )
A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com