【题目】在一次数学课上,老师在屏幕上出示了一个例题:在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,画出图形(如图),给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.
(1)要求同学从这四个等式中选出两个作为已知条件,可判定△ABC是等腰三角形.
请你用序号在横线上写出所有情形.答:
(2)选择第(1)题中的一种情形,说明△ABC是等腰三角形的理由,并写出解题过程.
解:我选择 .
证明:
科目:初中数学 来源: 题型:
【题目】如图,已知是数轴上的三点,点表示的数是6,.
(1)写出数轴上点,点表示的数;
(2)点为线段的中点,,求的长;
(3)动点分别从同时出发,点以每秒6个单位长度的速度沿数轴向右匀速运动,点以每秒3个单位长度的速度沿数轴向左匀速运动,求为何值时,原点恰好为线段的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,正方形的边长为,动点从点出发,在正方形的边上沿运动,设运动的时间为,点移动的路程为,与的函数图象如图②,请回答下列问题:
(1)点在上运动的时间为 ,在上运动的速度为
(2)设的面积为,求当点在上运动时,与之间的函数解析式;
(3)①下列图表示的面积与时间之间的函数图象是 .
②当 时,的面积为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为4的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为6,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.
(1)如图①,当点P为AB的中点时,求CD的长;
(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(理解新知)如图①,已知,在内部画射线,得到三个角,分别为,,,若这三个角中有一个角是另外一个角的两倍,则称射线为的“二倍角线”.
(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)
(2)若,射线为的“二倍角线”,则的大小是______;
(解决问题)如图②,己知,射线从出发,以/秒的速度绕点逆时针旋转;射线从出发,以/秒的速度绕点顺时针旋转,射线,同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为秒.
(3)当射线,旋转到同一条直线上时,求的值;
(4)若,,三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出所有可能的值______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A1,A2,…,An均在直线y=x-1上,点B1,B2,…,Bn均在双曲线y=-上,并且满足A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若a1=-1,则a2018=_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,公共汽车行驶在笔直的公路上,这条路上有四个站点,每相邻两站之间的距离为千米,从站开往站的车称为上行车,从站开往站的车称为下行车.第一班上行车、下行车分别从站、站同时发车,相向而行,且以后上行车、下行车每隔分钟分别在站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、 下行车的速度均为千米/小时.
第一班上行车到站、第一班下行车到站分别用时多少?
第一班上行车与第一班下行车发车后多少小时相距千米?
一乘客在两站之间的处,刚好遇到上行车,千米,他从处以千米/小时的速度步行到站乘下行车前往站办事.
①若千米,乘客从处到达站的时间最少要几分钟?
②若千米,乘客从处到达站的时间最少要几分钟?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com