精英家教网 > 初中数学 > 题目详情

【题目】如图,边长为4的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是______.

【答案】1

【解析】

AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用边角边证明△DCF△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时最短,再根据∠CAD=30°求解即可.

解:如图,取AC的中点G,连接EG

∵旋转角为60°

∴∠ECD+DCF=60°,

又∵∠ECD+GCE=ACB=60°

∴∠DCF=GCE

AD是等边△ABC的对称轴,

CD=CG

又∵CE旋转到CF

CE=CF

在△DCF和△GCE中,

∴△DCF≌△GCESAS),

DF=EG

根据垂线段最短,EGAD时,EG最短,即DF最短,

此时

DF=1.

故答案为:1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解不等式组并求其整数解的和.

解:解不等式①,得_______

解不等式②,得________

把不等式①和②的解集在数轴上表示出来:

原不等式组的解集为________

由数轴知其整数解为________,和为________.

在解答此题的过程中我们借助于数轴上,很直观地找出了原不等式组的解集及其整数解,这就是“数形结合的思想”,同学们要善于用数形结合的思想去解决问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC中,ABAC

1)如图1,在ADE中,若ADAE,且∠DAE=∠BAC,求证:CDBE

2)如图2,在ADE中,若∠DAE=∠BAC60°,且CD垂直平分AEAD6CD8,求BD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了科学建设学生健康成长工程.随机抽取了部分学生家庭对其家长进行了主题为周末孩子在家您关心吗?的问卷调查,将回收的问卷进行分析整理,得到了如下的样本统计表和扇形统计图:

代号

情况分类

家庭数

带孩子玩并且关心其作业完成情况

16

只关心其作业完成情况

b

只带孩子玩

8

既不带孩子玩也不关心其作业完成情况

d

(1)求的值;

(2)该校学生家庭总数为500,学校决定按比例在类家庭中抽取家长组成培训班,其比例为类取20%,类各取60%,请你估计该培训班的家庭数;

(3)若在类家庭中只有一个城镇家庭,其余是农村家庭,请用列举法求出在类中随机抽出2个家庭进行深度采访,其中有一个是城镇家庭的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:例如,若数轴上点 A , B 表示的数分别为 a , b ,则 A , B 两点之间的距离AB=,线段 AB 的中点M 表示的数为.如图,在数轴上,点A,B,C表示的数分别为-8220

1)如果点A和点C都向点B运动,且都用了4秒钟,那么这两点的运动速度分别是点A每秒_______个单位长度、点C每秒______个单位长度;

2)如果点A以每秒1个单位长度沿数轴的正方向运动,点C以每秒3个单位长度沿数轴的负方向运动,设运动时间为t秒,请问当这两点与点B距离相等的时候,t为何值?

3)如果点A以每秒1个单位长度沿数轴的正方向运动,点B以每秒3个单位长度沿数轴的正方向运动,且当它们分别到达C点时就停止不动,设运动时间为t秒,线段AB的中点为点P

① t为何值时PC=12

② t为何值时PC=4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次数学课上,老师在屏幕上出示了一个例题:在△ABC中,DE分别是ABAC上的一点,BECD交于点O,画出图形(如图),给出下列四个条件:①∠DBO=∠ECO②∠BDO=∠CEO③BD=CE④OB=OC

1)要求同学从这四个等式中选出两个作为已知条件,可判定△ABC是等腰三角形.

请你用序号在横线上写出所有情形.答:

2)选择第(1)题中的一种情形,说明△ABC是等腰三角形的理由,并写出解题过程.

解:我选择

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,的顶点在第一象限,点的坐标分别为,直线轴于点,若关于点成中心对称,则点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一座人行天桥的示意图,天桥的高度是10米,CBDB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据: ≈1.414 ≈1.732

查看答案和解析>>

同步练习册答案