【题目】新冠肺炎疫情发生后,为支援疫情防控,某企业研发14条口罩生产线,生产普通防护口罩和普通N95口罩,现日总产量达170万只.已知每条生产线可日产普通防护口罩15万只或普通N95口罩5万只.
(1)将170万用科学记数法表示为 ;
(2)这14条生产线中,生产普通防护口罩和普通N95口罩的生产线分别有多少条?
【答案】(1)
;(2)普通防护口罩生产线10条,普通N95口罩生产线4条.
【解析】
(1)科学记数法的表示形式为
的形式,其中
,
为整数.确定
的值时,要看把原数变成
时,小数点移动了多少位,
的绝对值与小数点移动的位数相同.当原数绝对值
时,
是正数;当原数的绝对值
时,
是负数;
(2)设普通防护口罩生产线
条,普通
口罩的生产线
条,根据“口罩生产线有14条,日总产量达170万只”列出方程组求解即可.
解:(1)将170 0000用科学记数法表示为:
.
故答案为:
.
(2)设这14条生产线中有普通防护口罩生产线
条,普通
口罩的生产线
条,
根据题意得:
,
解得:
,
答:这14条生产线中有普通防护口罩生产线10条,普通
口罩的生产线4条.
科目:初中数学 来源: 题型:
【题目】为了满足学生的兴趣爱好,学校决定在七年级开设兴趣班,兴趣班设有四类:
围棋班;
象棋班;
书法班;
摄影班.为了便于分班,年级组随机抽查了部分学生的选课意向(每人选报一类),并绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下问题:
![]()
(1)求扇形统计图中
、
的值,并补全条形统计图;
(2)已知该校七年级有600名学生,学校计划开设三个“围棋班”,每班要求不超过40人,实行随机分班.
①学校的开班计划是否能满足选择“围棋班”的学生意愿,说明理由;
②展鹏、展飞是一对双胞胎,他们都选择了“围棋班”,并且希望能分到同一个班,用树状图或列表法求他们的希望得以实现的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线
与
轴交于点
,与
轴交于点
,经过
、
两点的抛物线
与
轴的另一交点
.
![]()
(1)求该抛物线的函数表达式;
(2)
是该抛物线上的动点,过点
作
轴于点
,交
于点
,
交
轴于点
,设点
的横坐标为
.
①求出四边形
的周长
与
的函数表达式,并求
的最大值;
②当
为何值时,四边形
是菱形;
③是否存在点
,使得以
、
、
为顶点的三角形与
相似?若存在,请求出满足条件的点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.
(1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0),B(1,0)两点,与y轴交于点C,其顶点为D,连接AD,点P是线段AD上一个动点(不与A,D重合),过点P作y轴的垂线,垂足点为E,连接AE.
![]()
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线
:
(
为常数)的顶点为
.
(1)求点
的坐标;(用含
的式子表示)
(2)在同一平面直角坐标系中,存在函数图象
,点
在图象
上,点
在抛物线
上,对于任意的实数
,都有点
,
关于点
对称.
①当
时,求图象
对应函数的解析式;
②当
时,都有
成立,结合图象,求
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.
(1)求抛物线的函数表达式和点C的坐标;
(2)若△AQP∽△AOC,求点P的横坐标;
(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )
A. c<﹣3B. c<﹣2C. c<
D. c<1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是3,BP=CQ,连接AQ、DP交于点O,并分别与边CD、BC交于点F、E,连接AE,下列结论:①AQ⊥DP;②OA2=OEOP;③S△AOD<S四边形OECF;④当BP=1时,tan∠OAE=
,其中正确结论的是_____.(请将正确结论的序号填写在横线上)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com