精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,是线段延长线上一点,连接,过点.

1)求证:.

2)将射线绕点顺时针旋转后,所得的射线与线段的延长线交于点,连接.

①依题意补全图形;

②用等式表示线段之间的数量关系,并证明.

【答案】(1)详见解析;(2)①详见解析;②,理由详见解析.

【解析】

(1)利用同角的余角即可解出此问.

(2)①根据题意补全图形;②过点CCGCEAEG,进而判断出∠CAE=CBD,即可判断△ACG≌△BCE,得出AG=BE,CG=CE,进而判断出EC=CE,得出AE=BE+CE,再判断出EF=AE,即可.

1)证明:如图1

又∵

.

2)①补全图形如图2.

.

证明:在上截取,使.

又∵

.

.

又∵.

.

.

又∵射线绕点顺时针旋转

后得到,且

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在ABBC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且xy

1)若所用铁栅栏的长为40米,求yx的函数关系式,并直接写出自变量x的取值范围;

2)在(1)的条件下,求Sx的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线,直线,直线

1)当m=0时,若直线经过此抛物线的顶点,求b的值

2)将此抛物线夹在之间的部分(含交点)图象记为,若

①判断此抛物线的顶点是否在图象上,并说明理由;

②图象上是否存在这样的两点:,其中?若存在,求相应的的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yx22mxm2m1m为常数).

1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;

2)将该二次函数的图像向下平移kk0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.

已知:如图1外的一点.

求作:过点的切线.

作法:如图2

①连接

②作线段的垂直平分线,直线

③以点为圆心,为半径作圆,交于点

④作直线.

就是所求作的的切线.

根据上述作图过程,回答问题:

1)用直尺和圆规,补全图2中的图形;

2)完成下面的证明:

证明:连接

∵由作图可知的直径,

______)(填依据),

又∵的半径,

就是的切线(______)(填依据).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家计划2035年前实施新能源汽车,某公司为加快新旧动能转换,提高公司经济效益,决定对近期研发出的一种新型能源产品进行降价促销.根据市场调查:这种新型能源产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5.已知每个新型能源产品的成本为100.

问:(1)设该产品的销售单价为元,每天的利润为._________(用含的代数式表示)

2)这种新型能源产品降价后的销售单价为多少元时,公司每天可获利32000元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以BC为直径的⊙OAB于点DDEAC于点E,且∠AADE

(1)求证:DE是⊙O的切线;

(2)若AD=16,DE=10,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点是斜边的中点.点从点出发以的速度向点运动,点同时从点出发以一定的速度沿射线方向运动,规定当点到终点时停止运动.设运动的时间为秒,连接

1)填空:______

2)当且点运动的速度也是时,求证:

3)若动点的速度沿射线方向运动,在点、点运动过程中,如果存在某个时间,使得的面积是面积的两倍,请你求出时间的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°BD平分∠ABC.求作⊙O,使得点O在边AB上,且⊙O经过BD两点;并证明AC与⊙O相切.(尺规作图,保留作图痕迹,不写作法)

查看答案和解析>>

同步练习册答案