9£®Èçͼ£¬¶þ´Îº¯Êýy=-$\frac{1}{2}$x2+bx+cµÄͼÏó¾­¹ýµãA£¬B£¨-2£¬0£©£¬C£¨0£¬4£©£¬×÷Ö±ÏßAC£¬µãMÊǶþ´Îº¯ÊýͼÏóÉϵÄÒ»¶¯µã£¬¹ýµã×÷MD¡ÍxÖᣬ´¹×ãΪµãD£¬½»Ö±ÏßACÓÚµãN£¬Á¬½áCM£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ±í´ïʽ£»
£¨2£©µ±ËıßÐÎOCMDΪ¾ØÐÎʱ£¬ÇóµãMµÄ×ø±ê£»
£¨3£©ÉèµãMµÄºá×ø±êΪm£¬MNµÄ³¤¶ÈΪd£¬Çód¹ØÓÚmµÄº¯Êý¹ØÏµÊ½£»
£¨4£©ÈôEÊÇOCµÄÖе㣬ÒÔµãM¡¢N¡¢E¡¢CΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬ÇómµÄÖµ£®

·ÖÎö £¨1£©½«µãB£¨-2£¬0£©¡¢C£¨0£¬4£©·Ö±ð´úÈëy=-$\frac{1}{2}$x2+bx+cÖУ¬ÁгöbºÍcµÄ¶þÔªÒ»´Î·½³Ì×飬Çó³öbºÍcµÄÖµ¼´¿É£»
£¨2£©ÈôËıßÐÎOCMDΪ¾ØÐΣ¬Ôò¡ÏMCO=¡ÏCMD=90¡ã£¬OC=MD£¬ÓÚÊǵõ½-$\frac{1}{2}$x2+x+4=4£¬Çó³öxµÄÖµ¼´¿É£»
£¨3£©ÉèÖ±ÏßACµÄº¯Êý±í´ïʽΪy=kx+b£¬Áîy=0£¬¼´-$\frac{1}{2}$x2+x+4=0£¬Çó³öµãAµÄ×ø±ê£¬½ø¶øÇó³öÖ±ÏßACµÄº¯Êý±í´ïʽ£¬·ÖMÔÚNµÄÉÏ·½ºÍÏ·½£¬½áºÏmµÄȡֵ·¶Î§£¬Ð´³ömºÍdµÄº¯Êý¹ØÏµÊ½£»
£¨4£©¸ù¾ÝÌâÒâÊ×ÏÈÇó³öOEµÄ³¤£¬È»ºó·ÖµãMÔÚµãNµÄÉÏ·½Ê±ºÍÏ·½Ê±£¬ÁîMN=2£¬Çó³ömµÄÖµ¼´¿É£®

½â´ð ½â£º£¨1£©½«µãB£¨-2£¬0£©¡¢C£¨0£¬4£©·Ö±ð´úÈëy=-$\frac{1}{2}$x2+bx+cÖУ¬
µÃ$\left\{\begin{array}{l}{-\frac{1}{2}¡Á4-2b+c=0}\\{c=4}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{b=1}\\{c=4}\end{array}\right.$£¬
¡àËùÇó¶þ´Îº¯Êý±í´ïʽΪy=-$\frac{1}{2}$x2+x+4£»

£¨2£©ÈôËıßÐÎOCMDΪ¾ØÐΣ¬Ôò¡ÏMCO=¡ÏCMD=90¡ã£¬OC=MD£®
¡à-$\frac{1}{2}$x2+x+4=4£¬
½âµÃx1=0£¬x2=2£®
ÔòµãM×ø±êΪ£¨2£¬4£©£»

£¨3£©Áîy=0£¬¼´-$\frac{1}{2}$x2+x+4=0£¬
½âµÃx1=-2£¬x2=4£®ÔòµãA×ø±êΪ£¨4£¬0£©£®
ÉèÖ±ÏßACµÄº¯Êý±í´ïʽΪy=kx+b£®
ÓÉÌâÒ⣬µÃ$\left\{\begin{array}{l}{4k+b=0}\\{b=4}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{k=-1}\\{b=4}\end{array}\right.$£¬
Ö±ÏßACµÄº¯Êý±í´ïʽΪy=-x+4£®
¡ßµãMµÄºá×ø±êΪm£¬
¡àµãMµÄ×ø±êΪ£¨m£¬-$\frac{1}{2}$x2+x+4£©£¬
µãNµÄ×ø±êΪ£¨m£¬-m+4£©£¬
µ±MÔÚNµÄÉÏ·½£¬¼´0¡Üm¡Ü4ʱ£¬d=-$\frac{1}{2}$m2+m+4-£¨-m+4£©=-$\frac{1}{2}$m2+2m£¬
µ±MÔÚNµÄÏ·½£¬¼´m£¼0»òm£¾4ʱd=£¨-m+4£©-£¨-$\frac{1}{2}$m2+m+4£©=$\frac{1}{2}$m2-2m£¬
×ÛÉÏd=$\left\{\begin{array}{l}{-\frac{1}{2}{m}^{2}+2m£¨0¡Üm¡Ü4£©}\\{\frac{1}{2}{m}^{2}-2m£¨m£¼0»òm£¾4£©}\end{array}\right.$£®

£¨4£©¡ßµãEÊÇOCµÄÖе㣬µãCµÄ×ø±êΪ£¨0£¬4£©£¬
¡àOE=2£¬
¢Ùµ±µãMÔÚµãNµÄÉÏ·½Ê±£¬MN=-$\frac{1}{2}$m2+2m=2£¬
½âµÃm1=m2=2£¬
¡àm=2£¬
¢Úµ±µãMÔÚµãNµÄÏ·½Ê±£¬MN=$\frac{1}{2}$m2-2m=2£¬
½âµÃm1=2-2$\sqrt{2}$£¬m2=2+2$\sqrt{2}$£¬
¡àm=2-2$\sqrt{2}$£¬m=2+2$\sqrt{2}$£¬
×ÛºÏËùÊö£¬µ±ÒÔµãM¡¢N¡¢E¡¢CΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐÎʱ£¬
mµÄֵΪm1=2£¬m2=2-2$\sqrt{2}$£¬m3=2+2$\sqrt{2}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣬´ËÌâÉæ¼°µ½´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢¾ØÐεÄÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÅж¨µÈ֪ʶ£¬½â´ð±¾ÌâµÄ¹Ø¼üÊǶÔMºÍNµÄλÖ÷ÖÀàÌÖÂÛ£¬´ËÌâ×îºóÁ½Îʶ¼ÐèÒª½øÐзÖÀàÌÖÂÛ£¬´ËÌâÓÐÒ»¶¨µÄÄѶȣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÒ»´Îº¯Êýy1=-$\frac{2}{3}$x+$\frac{2}{3}$a£¬y2=$\frac{3}{2}$x-$\frac{a-1}{2}$£¬ÊÔÇóµ±aΪºÎֵʱ£¬Á½º¯ÊýͼÏóµÄ½»µãÔÚµÚ¶þÏóÏÞ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÔÚʵÊý0£¬$\frac{\sqrt{3}}{2}$£¬-3$\frac{1}{7}$£¬1.020020002£¬$\root{3}{4}$£¬-¦ÐÖУ¬ÎÞÀíÊýÓУ¨¡¡¡¡£©¸ö£®
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÌÝÐÎABCDÖУ¬AD¡ÎBC£¬E¡¢F·Ö±ðÊÇAB¡¢CDµÄÖе㣬Á¬½ÓAF²¢ÑÓ³¤²¢BCÑÓ³¤ÏßÓÚµãG£®
ÇóÖ¤£ºEF¡ÎAD¡ÎBC£¬EF=$\frac{1}{2}$£¨AD+BC£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬ÔÚÒ»Õų¤Îª9cm£¬¿íΪ8cmµÄ¾ØÐÎֽƬÉÏ£¬ÏÖÒª¼ôÏÂÒ»¸öÑü³¤Îª5cmµÄ¶Û½ÇµÈÑüÈý½ÇÐΣ¬Ôò¼ôϵĶ۽ǵÈÑüÈý½ÇÐÎÑüÉϵĸßΪ3»ò4cm£¬£¨ÒªÇ󣺶۽ǵÈÑüÈý½ÇÐεÄÒ»¸ö¶¥µãÓë¾ØÐεÄÒ»¸ö¶¥µãÖØºÏ£¬ÆäÓàÁ½¸ö¶¥µãÔÚ¾ØÐεıßÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¡¾ÔÙ¶Á½Ì²Ä¡¿
¿íÓ볤µÄ±ÈÊÇ$\frac{\sqrt{5}-1}{2}$£¨Ô¼Îª0.618£©µÄ¾ØÐνÐ×ö»Æ½ð¾ØÐΣ®

ÏÂÃæ£¬ÎÒÃÇÓÿíΪ4cmµÄ¾ØÐÎֽƬÕÛµþÒ»¸ö»Æ½ð¾ØÐΣ®
µÚÒ»²½£¬ÔÚ¾ØÐÎֽƬµÄÒ»¶Ë£¬ÀûÓÃͼ¢ÙµÄ·½·¨ÕÛ³öÒ»¸öÕý·½ÐΣ¬È»ºó°ÑֽƬչƽ£®
µÚ¶þ²½£¬Èçͼ¢Ú£¬°ÑÕâ¸öÕý·½ÐÎÕÛ³ÉÁ½¸öÏàµÈµÄ¾ØÐΣ¬ÔÙ°ÑֽƬչƽ£®
µÚÈý²½£¬ÕÛ³öÄÚ²à¾ØÐεĶԽÇÏßAB£¬²¢°ÑËüÕÛµ½Í¼¢ÛÖÐËùʾµÄAD´¦£®
µÚËIJ½£¬Õ¹Æ½Ö½Æ¬£¬°´ÕÕËùµÃµÄDµãÕÛ³öDE£¬Èçͼ¢Ü¡­
¡¾ÎÊÌâ½â¾ö¡¿
£¨1£©Í¼¢ÛÖÐAB=2$\sqrt{5}$cm£¨±£Áô¸ùºÅ£©£»
£¨2£©Äã·¢ÏÖͼ¢ÜÖÐÓм¸¸ö»Æ½ð¾ØÐΣ¿Ç붼д³öÀ´£¬²¢Ñ¡ÔñÆäÖÐÒ»¸ö˵Ã÷ÀíÓÉ£»
£¨3£©ÔÚͼ¢ÛÖУ¬Á¬½ÓBD£¬ÒÔAQ¡¢BDΪÁ½Ö±½Ç±ß×÷Ö±½ÇÈý½ÇÐΣ¬Çó¸ÃÖ±½ÇÈý½ÇÐÎб±ßµÄ³¤£®
£¨4£©ÔÚͼ¢ÛÖÐÂäÔÚAQ¡¢FQÉϸ÷ȡһµãS¡¢T£¬ÊÇFS+STµÄÖµ×îС£¬ÇëÖ±½Óд³öÕâ¸ö×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èç¹û$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$ÊÇ·½³Ì×é$\left\{\begin{array}{l}{ax+by=1}\\{ax-by=5}\end{array}\right.$µÄ½â£¬Çóa2015-2b2016µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®·Öʽ·½³Ì£º$\frac{x}{x+2}=\frac{x-1}{x}$µÄ½âx=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÁÐʼþÊÇÈ·¶¨Ê¼þµÄÊÇ£¨¡¡¡¡£©
A£®ÒõÌìÒ»¶¨»áÏÂÓê
B£®ºÚ°µÖдÓ5°Ñ²»Í¬µÄÔ¿³×ÖÐËæÒâÃþ³öÒ»°Ñ£¬ÓÃËü´ò¿ªÁËÃÅ
C£®´ò¿ªµçÊÓ»ú£¬ÈÎѡһ¸öƵµÀ£¬ÆÁÄ»ÉÏÕýÔÚ²¥·ÅÐÂÎÅÁª²¥
D£®ÔÚÎå¸ö³éÌëÖÐÈÎÒâ·ÅÈë6±¾Ê飬ÔòÖÁÉÙÓÐÒ»¸ö³éÌëÀïÓÐÁ½±¾Êé

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸