精英家教网 > 初中数学 > 题目详情

【题目】若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1与C2为“友好抛物线”.

(1)求抛物线C2的解析式.

(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.

(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.

【答案】(1);(2);(3)存在,M(1,2)或(1,5).

【解析】

试题分析:(1)先求得y1顶点坐标,然后依据两个抛物线的顶点坐标相同可求得m、n的值;

(2)设A(a,).则OQ=x,AQ=,然后得到OQ+AQ与a的函数关系式,最后依据配方法可求得OQ+AQ的最值;

(3)连接BC,过点B′作B′D⊥CM,垂足为D.接下来证明△BCM≌△MDB′,由全等三角形的性质得到BC=MD,CM=B′D,设点M的坐标为(1,a).则用含a的式子可表示出点B′的坐标,将点B′的坐标代入抛物线的解析式可求得a的值,从而得到点M的坐标.

【解答】解:(1)∵=,∴抛物线C1的顶点坐标为(1,4).∵抛物线C1:与C2顶点相同,∴=1,﹣1+m+n=4.解得:m=2,n=3,抛物线C2的解析式为

(2)如图1所示:

设点A的坐标为(a,∵AQ=,OQ=a,∴AQ+OQ= ==当a=时,AQ+OQ有最大值,最大值为

(3)如图2所示;连接BC,过点B′作B′D⊥CM,垂足为D.

∵B(﹣1,4),C(1,4),抛物线的对称轴为x=1,∴BC⊥CM,BC=2.∵∠BMB′=90°,∴∠BMC+∠B′MD=90°.∵B′D⊥MC,∴∠MB′D+∠B′MD=90°,∠MB′D=∠BMC.在△BCM和△MDB′中,∵∠MBD=BMC,BCM=MDB,BM=MB,∴△BCM≌△MDB′,BC=MD,CM=B′D.设点M的坐标为(1,a).则B′D=CM=4﹣a,MD=CB=2,点B′的坐标为(a﹣3,a﹣2),.整理得:解得a=2,或a=5.

当a=2时,M的坐标为(1,2),当a=5时,M的坐标为(1,5).

综上所述当点M的坐标为(1,2)或(1,5)时,B′恰好落在抛物线C2上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】53x2yxy2)﹣4(﹣xy2+3x2y)的值,其中|x+2|+y320

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5.小明得分要超过90分,他至少要答对多少道题?若设小明答对了x道题,则由题意可列出的不等式为( )

A.10x+5(20x)90B.10x+5(20x)90

C.10x5(20x)90D.10x5(20x)90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(

A. a2+a3=a5 B. (a2)3=a5 C. (a+b)2=a2+b2 D. a6÷a2=a4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是( )

A. 9㎝ B. 12㎝ C. 12㎝或15㎝ D. 15㎝

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把0.22×105改成科学记数法的形式,正确的是(  )
A.2.2×103
B.2.2×104
C.2.2×105
D.2.2×106

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个数同( )相加,仍得这个数
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015年“圣地车都”﹣﹣随州改装车的总产值为14.966亿元,其中14.966亿元用科学记数法表示为元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简:(2x-y)2 + (x+y)(x-y).

查看答案和解析>>

同步练习册答案