精英家教网 > 初中数学 > 题目详情
下列实数中是无理数的是(  )
A、
3
B、0
C、3.14
D、-2
考点:无理数
专题:
分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
解答:解:A、是无理数,选项正确;
B、是整数,是有理数选项错误;
C、是有限小数,是有理数,选项错误;
D、是整数,是有理数,选项错误.
故选A.
点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

先化简,再求值:(a+2)2+(a+1)(a-5),其中a=-
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O的半径为5,直线l与⊙O相交,点O到直线l的距离为3,则⊙O上到直线l的距离为
2
的点共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

计算
(1)(-1)2015-|-
3
|
+
12
+(
3
-π)0;   
(2)(
3
-1)2-(3+
5
)
(3-
5
)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,对称轴为x=-3的抛物线y=ax2+2x 与x 轴相交于点B、O.连结AB,把AB所在的直线平移,使它经过原点O,得到直线l(1)①求抛物线的解析式,并求出顶点A 的坐标;
②求直线l的函数解析式.
(2)若点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当9<S≤18时,t的取值范围;
(3)在(2)的条件下,当t取最小值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=-
1
2
x+2分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

我国2014年的外汇储备接近了4万亿美元,将这个数据用科学记数法可记作(  )
A、0.4×1013
B、4×1012
C、4×1013
D、40000×108

查看答案和解析>>

科目:初中数学 来源: 题型:

把两块三角板按如图所示那样拼在一起,那么∠ABC的度数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,公路上有A、B、C三个汽车站,一辆汽车8:00从离A站10km的P地出发,向C站匀速行驶,15min后离A站30km.
(1)设出发x h后,汽车离A站y km,写出y与x之间的函数表达式;
(2)当汽车行驶到离A站250km的B站时,接到通知要在12:00前赶到离B站60km的C站.汽车按原速行驶,能否准时到达?如果能,那么汽车何时到达C站?

查看答案和解析>>

同步练习册答案