【题目】如图,正△ABC中,点P为BC边上的任意一点(不与点B,C重合),且∠APD= 60° ,PD交边AB于点D. 设BP= x ,BD= y ,右图为y关于x的函数大致图象,下列判断中正确的是( )
①正△ABC中边长为4;②图象的函数表达式是 , 其中 0<x<4;③ m=1
A. ①②③B. ①②C. ②③D. ①③
【答案】D
【解析】
设正△ABC边长为a,根据等边三角形性质可知∠B=∠C=60°,由三角形内角和定理和平角性质得∠CAP+∠APC=120°,∠BPD+∠APC=120°,等量代换可得∠CAP=∠BPD,根据相似三角形判定和性质得CA:BP=CP:BD,代入数值可得y关于x的函数解析式为:;由二次函数性质和图像可得x==2,从而可得a值,即正△ABC边长为4,故①正确;将a值代入可得y关于x的函数解析式为,故②错误;将二次函数解析式配方得,从而可得
m=1,故③正确.
解:∵△ABC为等边三角形,
∴∠B=∠C=60°,
∵∠APD=60°,
∴∠CAP+∠APC=120°,∠BPD+∠APC=120°,
∴∠CAP=∠BPD,
∴△CAP∽△BPD,
∴CA:BP=CP:BD,
设正△ABC边长为a,
∴CA=CB=a,CP=CB-BP=a-x,
∵ BP= x ,BD= y ,
∴a:x=(a-x):y,
即,
∴ y关于x的函数解析式为:,
∵抛物线对称轴为:x==2,
∴a=4,
∴正△ABC边长为4,
故①正确;
∴y关于x的函数解析式为:,
故②错误;
∵,
∴m=1,
故③正确;
综上所述:正确的有①③.
故答案为:D.
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.
(1)求二次函数y=ax2+2x+c的表达式;
(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;
(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BC是⊙O的直径,点A,D在⊙O上,∠B=2∠CAD,在BC的延长线上有一点P,使得∠P=∠ACB,弦AD交直径BC于点E.
(1)求证:DP与⊙O相切;
(2)判断△DCE的形状,并证明你的结论;
(3)若CE=2,DE=,求线段BC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设抛物线 y =m x2 -2m x+3 (m ≠0) 与 x 轴交于点 A (a, 0) 和 B (b, 0) .
(1)若 a =-1,求 m, b 的值;
(2)若 2m +n =3 ,求证:抛物线的顶点在直线 y =m x+ n 上;
(3)抛物线上有两点 P (x1, p) 和 Q (x2 , q) ,若 x1 <1 <x2 ,且 x1 +x2 >2 ,试比较 p 与 q 的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,ABCD的边AB=2,顶点A坐标为(1,b),点D坐标为(2,b+1)
(1)点B的坐标是 ,点C的坐标是 (用b表示);
(2)若双曲线y=过ABCD的顶点B和D,求该双曲线的表达式;
(3)若ABCD与双曲线y=(x>0)总有公共点,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正确的结论的个数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一座古塔AH的高为33米,AH⊥直线l,某校九年级数学兴趣小组为了测得该古塔塔刹AB的高,在直线l上选取了点D,在D处测得点A的仰角为26.6°,测得点B的仰角为22.8°,求该古塔塔刹AB的高.(精确到0.1米)(参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.5,sin22.8°=0.39,cos22.8°=092,tan22.8°=0.42)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com