分析 (1)先证明△ABM≌△DEN,同理得出△ABM≌△FEM≌△CBN,
(2)选择△ABM≌△DEN证明,根据正六边形得出∠ABM=∠DEN,AB=DE,∠BAM=∠EDN,证明全等即可.
解答 解:(1)与△ABM全等的三角形有△DEN,△FEM≌△CBN;
(2)证明△ABM≌△DEN,
证明:∵六边形ABCDEF是正六边形,
∴AB=DE,∠BAF=120°,
∴∠ABM=30°,
∴∠BAM=90°,
同理∠DEN=30°,∠EDN=90°,
∴∠ABM=∠DEN,∠BAM=∠EDN,
在△ABM和△DEN中,
$\left\{\begin{array}{l}{∠BAM=∠EDN}\\{AB=DE}\\{∠ABM=∠DEN}\end{array}\right.$,
∴△ABM≌△DEN(ASA).
点评 本题考查了正多边形和圆以及全等三角形的判定,掌握正多边形的性质和全等三角形的判定是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2b | B. | -2a | C. | -2b | D. | 2a |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com