4£®Èçͼ£¬ÊǺ¼ÖÝÊÐ2016Äê2ÔÂ·ÝµÄ¿ÕÆøÖÊÁ¿Ö¸ÊýµÄAQIÕÛÏßͳ¼ÆÍ¼£¬¿ÕÆøÖÊÁ¿Ö¸ÊýAQIµÄÖµÔÚ²»Í¬µÄÇø¼ä£¬¾Í´ú±íÁ˲»Í¬µÄ¿ÕÆøÖÊÁ¿Ë®Æ½£¨ÈçÔÚ0-50Ö®¼ä£¬´ú±í¡°ÓÅ¡±£» 51-100Ö®¼ä£¬´ú±í¡°Á¼¡±£» 101-150Ö®¼ä£¬´ú±í¡°Çá¶ÈÎÛȾ¡±µÈ£®£©ÒÔÏÂÊǹØÓÚº¼ÖÝÊÐ2016Äê2ÔÂ·Ý¿ÕÆøÖÊÁ¿ÌìÊýÇé¿öͳ¼ÆÍ¼£®

£¨1£©¸ù¾ÝÈý¸öͼ±íÖеÄÐÅÏ¢£¬Ç벹ȫÌõÐÎͳ¼ÆÍ¼ºÍÉÈÐÎͳ¼ÆÍ¼ÖÐȱʧµÄÊý¾Ý£®£¨ÉÈÐÎͳ¼ÆÍ¼ÖеÄÊý¾Ý¾«È·µ½1%£©
£¨2£©Çó³öͼ3ÖбíʾÇá¶ÈÎÛȾµÄÉÈÐÎÔ²ÐĽǵĶÈÊý£®£¨½á¹û¾«È·µ½¶È£©
£¨3£©ÔÚº¼ÖÝ£¬ÓÐÒ»ÖÖ¡°À¶¡±½Ð¡°Î÷ºþÀ¶¡±£®ÏÖÔÚµÄÒ»ÄêÖУ¬ÎÒÃÇÖÁÉÙÓг¬¹ýÒ»°ëÒÔÉϵÄʱ¼äÄÜ¿´¼û¡°Î÷ºþÀ¶¡±£®Çë¹ÀËã2016ÄêÒ»Ä꺼ÖÝµÄ¿ÕÆøÖÊÁ¿ÎªÓÅÁ¼µÄÌìÊý£®£¨Ò»Äê°´365¼Æ£¬¾«È·µ½Ì죩

·ÖÎö £¨1£©¸ù¾Ýͼ1ÖеÄÊý¾ÝÕûÀí³öËĸöµÈ¼¶µÄÊýÄ¿£¬²¹È«Í¼2£¬½«Í¼2ÖÐÖжȡ¢Çá¶ÈÎÛȾÌìÊý·Ö±ð³ýÒÔ×ÜÌìÊýµÃ°Ù·ÖÂÊ£¬²¹È«Í¼3£»
£¨2£©Çá¶ÈÎÛȾµÄÉÈÐÎÔ²ÐĽǵĶÈÊý=Çá¶ÈÎÛȾ°Ù·ÖÂÊ¡Á360¡ã£»
£¨3£©Ò»ÄêµÄ¿ÕÆøÖÊÁ¿ÎªÓÅÁ¼µÄÌìÊý=365¡ÁÓÅÁ¼ÌìÊýÕ¼³é²é×ÜÌìÊýµÃ±ÈÀý£®

½â´ð ½â£º£¨1£©²¹È«Í³¼ÆÍ¼ÈçÏ£º

£¨2£©Çá¶ÈÎÛȾµÄÉÈÐÎÔ²ÐĽǵĶÈÊýΪ£º31%¡Á360¡ã¡Ö112¡ã£»
£¨3£©2016ÄêÒ»Ä꺼ÖÝµÄ¿ÕÆøÖÊÁ¿ÎªÓÅÁ¼µÄÌìÊýΪ£º$\frac{15+4}{29}$¡Á365¡Ö239£¨Ì죩£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËÌõÐÎͳ¼ÆÍ¼ºÍÉÈÐÎͳ¼ÆÍ¼£¬¶Á¶®Í³¼ÆÍ¼£¬´Ó²»Í¬µÄͳ¼ÆÍ¼Öеõ½±ØÒªµÄÐÅÏ¢Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£®ÌõÐÎͳ¼ÆÍ¼ÄÜÇå³þµØ±íʾ³öÿ¸öÏîÄ¿µÄÊý¾Ý£»ÉÈÐÎͳ¼ÆÍ¼Ö±½Ó·´Ó³²¿·ÖÕ¼×ÜÌåµÄ°Ù·Ö±È´óС£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬EµãΪDFÉϵĵ㣬BΪACÉϵĵ㣬¡Ï1=¡Ï2£¬¡ÏC=¡ÏD£¬ÇóÖ¤£º
¢ÙBD¡ÎCE
¢ÚDF¡ÎAC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬AC=6£¬BC=8£¬µãDΪ±ßCBÉϵÄÒ»¸ö¶¯µã£¨µãD²»ÓëµãBÖØºÏ£©£¬¹ýD×÷DE¡ÍAB£¬´¹×ãΪE£¬Á¬½ÓAD£¬½«¡÷DEBÑØÖ±ÏßDE·­Õ۵õ½¡÷DEF£¬µãBÂäÔÚÉäÏßBAÉϵÄF´¦£®
£¨1£©ÇóÖ¤£º¡÷DEB¡×¡÷ACB£»
£¨2£©µ±µãFÓëµãAÖØºÏʱ£¨Èçͼ¢Ù£©£¬ÇóÏß¶ÎBDµÄ³¤£»
£¨3£©ÉèBD=x£¬AF=y£¬Çóy¹ØÓÚxµÄº¯Êý½âÎöʽ£¬²¢ÅжÏÊÇ·ñ´æÔÚÕâÑùµÄµãD£¬Ê¹AF=FD£¿Èô´æÔÚ£¬ÇëÇó³öxµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ÆË㣺£¨3$\sqrt{3}$+2$\sqrt{2}$£©£¨2$\sqrt{3}$-3$\sqrt{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬µãMÔÚxÖáµÄÕý°ëÖáÉÏ£¬¡ÑM½»xÖáÓÚA¡¢BÁ½µã£¬½»yÖáÓÚC¡¢DÁ½µã£¬ÇÒCΪ»¡AEµÄÖе㣬AE½»yÖáÓÚGµã£¬ÈôµãAµÄ×ø±êΪ£¨-1£¬0£©£¬AE=4£®
£¨1£©ÇóµãCµÄ×ø±ê£»
£¨2£©Á¬½ÓMG¡¢BC£¬ÇóÖ¤£ºMG¡ÎBC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬Ö±Ïßy=-$\frac{3}{4}$x+6½»xÖáÓÚµãB£¬½»yÖáÓÚµãA£¬ÒÔABΪֱ¾¶×÷Ô²£¬µãCÊÇ$\widehat{AB}$µÄÖе㣬Á¬½ÓOC½»Ö±¾¶ABÓÚµãE£¬ÔòOCµÄ³¤Îª7$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Á½¸öÏàËÆÈý½ÇÐÎÒ»×é¶ÔÓ¦¸ßµÄ³¤·Ö±ðÊÇ2cmºÍ5cm£¬ÈôÔÚÕâÁ½¸öÈý½ÇÐεÄÒ»×é¶ÔÓ¦ÖÐÏßÖУ¬½Ï¶ÌµÄÖÐÏßÊÇ3cm£¬ÄÇô½Ï³¤µÄÖÐÏßÊÇ7.5cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÈôÖÊÊýp£¬qÂú×㣺3q-p-4=0£¬p+q£¼111£¬ÔòpqµÄ×î´óֵΪ1007£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼ÆË㣺
£¨1£©$\frac{4}{{x}^{2}-4}$+$\frac{2}{x+2}$+$\frac{1}{2-x}$
£¨2£©$\frac{{x}^{2}}{x-1}$-x-1
£¨3£©$\frac{b}{{a}^{2}-{b}^{2}}$¡Â£¨1-$\frac{a}{a+b}$£©
£¨4£©£¨$\frac{x+1}{x-1}$+$\frac{1}{{x}^{2}-2x+1}$£©¡Â$\frac{x}{x-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸