【题目】如图,等边三角形中,D是上一点,连接并将绕点A逆时针旋转120°得到线段,连接交于点F.
(1)当点D为中点,且时,___________;
(2)补全图形,探究线段与之间的数量关系,并证明你的结论.
【答案】(1);(2),证明见详解.
【解析】
(1)作,交CA的延长线于G,根据等边三角形的性质得出∠CAD=30°, AD⊥BC,进而求得BD=CD=1,等边三角形边长为2,易证得△AGE≌△DBA,GE=BC,AG=BD=1, 然后根据平行线分,线段成比例定理求得GF=FC=,即可求得AF;
(2)作,交CA的延长线于G,根据等边三角形的性质得出三角相等,进而求得∠ADB=∠EAG,易证得△AGE≌△DBA,证得GE=BC, AG=BD,然后根据平行线分线段成比例定理求得GF=FC,即可求得AF=CD.
(1)如图所示,作,交CA的延长线于G,
等边三角形中,点D为中点,
在和中,
,
,
,
(2)
如图所示,作交CA延长线于G,
,
,
,
在和中,
即.
科目:初中数学 来源: 题型:
【题目】已知下列命题:①若=-a,则a≤0;②若a>,则a2>b2;③两个位似图形一定是相似图形;④平行四边形的两组对边分别相等.其中原命题与逆命题均为真命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商店购进一批单价为20元的T恤,经试销发现,每天销售件数y(件)与销售价格x(元/件)满足如图的一次函数关系.
(1)求y与x之间函数关系式(不要求写出x取值范围);
(2)在不考虑积压等因素情况下,销售价格定为多少时,每天获得利润W最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学课上,同学们已经探究过“经过已知直线外一点作这条直线的垂线”的尺规作图:
已知:直线l和l外一点P.
求作:直线l的垂线,使它经过点P.
做法:如图:(1)在直线l上任取两点A、B;
(2)分别以点A、B为圆心,、长为半径画弧,两弧相交于点Q;
(3)作直线.
参考以上材料作图的方法,解决以下问题:
(1)以上材料作图的依据是__________________.
(2)已知:直线l和l外一点P.
求作:,使它与直线l相切于点C(尺规作图,不写作法,保留作图痕迹).
(3)完成下面的证明.
证明:∵_____________,且___________.
∴直线l是P的切线(_____________________)(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,BC=,E为CD边上一点,将△BCE沿BE折叠,点C的对应点为点F,连接AF,若,则CE=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c经过点A,点B,与y轴负半轴交于点C,且OC=OB,其中B点坐标为(3,0),对称轴l为直线x=,D为抛物线顶点.
(1)求抛物线的解析式;
(2)P为抛物线上一点(不与C重合),横坐标为m,连接AP,若∠PAB=∠CAB,求m的值;
(3)在(2)的条件下,AP交l于点Q,连接AD,点N为线段QD上一动点(不与Q、D重合),且点N的纵坐标为n.过点N作直线与线段DA相交于点M,若对于每一个确定的n的值,有且只有一个△DMN与△DAQ相似,请直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com