精英家教网 > 初中数学 > 题目详情

【题目】为了进一步丰富校园活动,学校准备购买一批足球和篮球,已知购买7个足球和5个篮球的费用相同;购买40个足球和20个篮球共需3400元.

1)求每个足球和篮球各多少元?

2)如果学校计划购买足球和篮球共80个,总费用不超过4800元,那么最多能买多少个篮球?

【答案】1)每个足球为50元,每个篮球为70元;(240个篮球

【解析】

1)设每个足球为元,每个篮球为元,根据等量关系即可列出二元一次方程组进行求解;(2)设买篮球个,则买足球()个,根据题意列出不等式即可求出m的取值.

解:(1)设每个足球为元,每个篮球为元,

根据题意得:

解得:

答:每个足球为50元,每个篮球为70元;

2)设买篮球个,则买足球()个,根据题意得:

解得:

为整数,

最大取40

答:最多能买40个篮球.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知坐标平面内的三个点.

(1)比较点到轴的距离与点到轴距离的大小;

(2)平移,当点和点重合时,求点的坐标;

(3)平移,需要至少向下平移超过 单位,并且至少向左平移 个单位,才能使位于第三象限.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6cmBC=12cm,点P从点A出发沿AB1cm/s的速度向点B移动;同时,点Q从点B出发沿BC2cm/s的速度向点C移动,几秒种后DPQ的面积为31cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大千故里,文化内江,我市某中学为传承大千艺术精神,征集学生书画作品.王老师从全校20个班中随机抽取了4个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.

1)王老师采取的调查方式是   (填普查抽样调査),王老师所调查的4个班共征集到作品    件,并补全条形统计图;

2)在扇形统计图中,表示班的扇形周心角的度数为   

3)如果全校参展作品中有4件获得一等奖,其中有1名作者是男生,3名作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点分别是边上的动点(点不与重合),且,过点的平行线,交于点,连接,设

1)试说明不论为何值时,总有

2)是否存在一点,使得四边形为平行四边形,试说明理由;

3)当为何值时,四边形的面积最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,EFEB⊙O的弦,且EF=EBEFAB交于点C,连接OF,若∠AOF=40°,则∠F的度数是(

A.20°B.35°C.40°D.55°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC⊙O的一条弦,AP⊙O的切线。作BM=AB并与AP交于点M,延长MBAC于点E,交⊙O于点D,连接AD.

1)求证:AB=BE

2)若⊙O的半径R=5AB=6,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆汽车油箱中有汽油.如果不再加油,那么油箱中的油量(单位:)随行驶路程(单位:)的增加而减少.已知该汽车平均耗油量为.

(Ⅰ)计算并填写下表:

(单位:

10

100

300

(单位:

(Ⅱ)写出表示的函数关系式,并指出自变量的取值范围;

(Ⅲ)若两地的路程约有,当油箱中油量少于时,汽车会自动报警,则这辆汽车在由地到地,再由地返回地的往返途中,汽车是否会报警?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读以下材料,并按要求完成相应地任务:

莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,Rr分别为外接圆和内切圆的半径,OI分别为其外心和内心,则.

如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.

下面是该定理的证明过程(部分):

延长AI⊙O于点D,过点I⊙O的直径MN,连接DMAN.

∵∠D=∠N∠DMI=∠NAI(同弧所对的圆周角相等)

∴△MDI∽△ANI

①,

如图2,在图1(隐去MDAN)的基础上作⊙O的直径DE,连接BEBDBIIF

∵DE⊙O的直径,∴∠DBE=90°

∵⊙IAB相切于点F∴∠AFI=90°

∴∠DBE=∠IFA

∵∠BAD=∠E(同弧所对圆周角相等)

∴△AIF∽△EDB

②,

任务:(1)观察发现: (用含Rd的代数式表示)

(2)请判断BDID的数量关系,并说明理由;

(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;

(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.

查看答案和解析>>

同步练习册答案