【题目】已知:正方形ABCD中,对角线AC、BD交于点O,过O点的两直线OE、OF互相垂直,分别交AB、BC于E、F,连接EF.
(1)求证:OE=OF;
(2)若AE=4,CF=3,求EF的长;
(3)若AB=8cm,请你计算四边形OEBF的面积.
【答案】(1)见解析;(2)EF=5;(3)16cm2
【解析】
(1)根据正方形的性质可得OB=OC,∠OBE=∠OCF=45°,再利用同角的余角相等得到∠BOE=∠COF,从而推出△OBE≌△OCF,即可得OE=OF;
(2)由(1)中的全等三角形可得BE=CF=3,由正方形的性质可知AB=BC,推出BF=AE=4,再根据勾股定理求出EF即可;
(3)由(1)中的全等三角形可将四边形OEBF的面积转化为△OBC的面积,等于正方形面积的四分之一.
(1)∵四边形ABCD为正方形
∴OB=OC,∠OBE=∠OCF=45°,BD⊥AC
∴∠BOF+∠COF=90°,
∵OE⊥OF
∴∠BOF+∠BOE=90°
∴∠BOE=∠COF
在△OBE和△OCF中,
∵∠OBE=∠OCF,OB=OC,∠BOE=∠COF
∴△OBE≌△OCF(ASA)
∴OE=OF
(2)∵△OBE≌△OCF
∴BE=CF=3,
∵四边形ABCD为正方形
∴AB=BC
即AE+BE=BF+CF
∴BF=AE=4
∴EF=
(3)∵△OBE≌△OCF
∴S四边形OEBF=S△OBE+S△OBF
=S△OCF+ S△OBF
=S△BOC
=S正方形ABCD
=
=16cm2
科目:初中数学 来源: 题型:
【题目】(解决问题)已知,,是同一平面上的三个点,以线段,为边,分别作正三角形和正三角形,连接,.
(1)如图1,当点,,在同一直线上时,线段与的大小关系是__________;
(2)如图2,当,,为三角形的顶点时(点,,不在同一条直线上),判断线段与的大小关系是否发生改变,并说明理由;
(类比猜想)
(3)已知,,是同一平面上的三个点,以线段,为边,分别作正方形,连接,,如图3和图4所示.判断线段与的大小关系,并在图4(点,,不在同一条直线上)中证明你的判断;
(推广应用)(4)上面的这些结论能否推广到任意正多边形(不必证明)?
(5)如图5,与的大小关系是__________,并写出它们分别在哪两个全等三角形中;
(6)请在图6中连接图中两个顶点,构造处一组全等三角形,并写出这两个全等的三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,C为AO的中点,CD⊥AB交半圆于点D,以C为圆心,CD为半径画弧交AB于E点,若AB=4,则图中阴影部分的面积是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:
(1)该班的学生共有 名;
(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;
(3)901班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是平行四边形ABCD的一条对角线,过AC中点O的直线分别交 AD,BC 于点 E,F.
(1)求证:四边形AECF是平行四边形;
(2)当 EF 与 AC 满足什么条件时,四边形 AECF 是菱形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,转盘被等分成10个扇形,每个扇形上面写有一个有理数.任意转动转盘,求转得下列各数的概率.
(1)转得正数;
(2)转得负整数;
(3)转得绝对值不大于5的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的边长是4cm,且∠ABC=60°,E是BC中点,P点在BD上,则PE+PC的最小值为( )cm.
A.2B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(0, ).
(1)求抛物线的解析式.
(2)抛物线与轴交于另一个交点为C,点D在线段AC上,已知AD=AB,若动点P从A出发沿线段AC以每秒1个单位长度的速度匀速运动,同时另一个动点Q以某一速度从B出发沿线段BC匀速运动,问是否存在某一时刻,使线段PQ被直线BD垂直平分,若存在,求出点Q的运动速度;若不存在,请说明理由.
(3)在(2)的前提下,过点B的直线与轴的负半轴交于点M,是否存在点M,使以A、B、M为顶点的三角形与相似,如果存在,请直接写出M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com