精英家教网 > 初中数学 > 题目详情

【题目】如图已知函数y=(k>0,x>0)的图象与一次函数y=mx+5(m<0)的图象相交不同的点A、B,过点AADx轴于点D,连接AO,其中点A的横坐标为x0AOD的面积为2.

(1)求k的值及x0=4m的值;

(2)记[x]表示为不超过x的最大整数,例如:[1.4]=1,[2]=2,设t=ODDC,若﹣<m<﹣,求[m2t]值.

【答案】(1)k= 4;m=﹣1;(2)[m2t]=5.

【解析】

(1)A(x0y0),可表示出AOD的面积,再结合k=x0y0可求出k的值,根据A的横坐标可得纵坐标,代入一次函数可得m的值.

(2)先根据一次函数与x轴的交点确定OC的长,表示出DC的长,从而可以表示t,根据A的横坐标x0,即x0满足,可得,再根据m的取值计算m2·t,最后利用新定义可得所求值.

(1)设A(x0,y0),则OD=x0,AD=y0

SAOD=ODAD==2,

k=x0y0=4;

x0=4时,y0=1,

A(4,1),

代入y=mx+5中得4m+5=1,m=﹣1;

(2)

mx2+5x﹣4=0,

A的横坐标为x0,

mx02+5x0=4,

y=0时,mx+5=0,

x=﹣

OC=﹣,OD=x0

m2t=m2(ODDC),

=m2x0(﹣﹣x0),

=m(﹣5x0﹣mx02),

=﹣4m,

<m<﹣

5<﹣4m<6,

[m2t]=5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,P是等边ABC内部一点,∠APBBPCCPA的大小之比是567,则以PAPBPC为边的三角形的三个内角的大小之比是(从小到大)(

A.234B.456C.345D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,OACABD的面积之和为,则k的值为(

A. 4 B. 3 C. 2 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列从左边到右边的变形,是因式分解的是(  )

A.y5y6=(y6)(y+1B.a+4a3aa+4)﹣3

C.xx1)=xxD.m+n=(m+n)(mn

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明根据学习函数的经验,对函数y=x+的图象与性质进行了探究.

下面是小明的探究过程,请补充完整:

(1)函数y=x+的自变量x的取值范围是_____

(2)下表列出了yx的几组对应值,请写出m,n的值:m=_____,n=_____

x

﹣3

﹣2

﹣1

1

2

3

4

y

﹣2

m

2

n

(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象

(4)结合函数的图象,请完成:

①当y=﹣时,x=_____

②写出该函数的一条性质_____

③若方程x+=t有两个不相等的实数根,则t的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD为矩形的四个顶点,AB=16 cm,AD=6 cm,动点PQ分别从点AC同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:

(1)PQ两点从开始出发多长时间时,四边形PBCQ的面积是33 cm2?

(2)PQ两点从开始出发多长时间时,点P与点Q之间的距离是10 cm?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角尺按如图①方式拼接:含30°角的三角尺的长直角边与含45°角的三角尺的斜边恰好重合(在RtABC中,∠ACB90°,∠BAC30°;在RtACD中,∠ADC90°DAC45°)已知AB2PAC上的一个动点.

1)当PDBC时,求∠PDA的度数;

2)如图②,若ECD的中点,求DEP周长的最小值;

3)如图③,当DP平分∠ADC时,在ABC内存在一点Q,使得∠DQC=∠DPC,且CQ,求PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:射线于点,半径是射线上的一个动点(不与重合),直线,过的切线交射线

是点在圆内移动时符合已知条件的图形,在点移动的过程中,请你通过观察、测量、比较,写出一条与的边、角或形状有关的规律,并说明理由;

请你在图中画出点在圆外移动时符合已知条件的图形,第题中发现的规律是否仍然存在?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2l1交于点C(m,4).

(1)求m的值及l2的解析式;

(2)求SAOC﹣SBOC的值;

(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.

查看答案和解析>>

同步练习册答案