精英家教网 > 初中数学 > 题目详情

【题目】在一条直线上依次有A、B、C三自行车爱好者甲、乙两同时分别从A、B两地出发,沿直线匀速向C已知甲的速度为20 km/h,设甲、乙两行驶x(h)后,与A的距离分别为y1 、y2 (km), y1 、y2 与x的函数关系如图所示.

(1)y2x的函数关系

2若两人在出发时都配备了通话距离为3km的对讲机,求甲、乙两人在骑行过程中可以用对讲机通话的时间

【答案】(1) y2=15x+5;(2) .

【解析】

试题(1)根据甲的速度求出y1=20x,然后求出x=1时的函数值,再设y2=kx+b,然后利用待定系数法求一次函数解析式解答;

(2)分乙在前和甲在前两种情况求出距离为3km的时间,然后相减即为可以用对讲机通话的时间.

(1)甲的速度为20 km/h,

y1=20x,

当x=1时,y1=20=y2,

设y2=kx+b,

根据题意,得

解得

y2=15x+5;

(2)当y2-y1=3时,15x+5-20x=3,x=

当y1-y2=3时,20x-(15x+5)=3,x=

答:甲、乙两人在骑行过程中可以用对讲机通话的时间为小时.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】反比例函数和一次函数y=k2x+b的图象交于点M(3,﹣)和点N(﹣1,2),则k1=_____,k2=____,一次函数的图象交x轴于点_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一张三角形纸片如图甲,其中将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为如图乙再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为如图丙原三角形纸片ABC中,的大小为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CDAB于点G,点FCD上的一点,且满足,连接AF并延长交⊙O于点E,连接ADDE,若CF=2,AF=3,给出下列结论:①△ADF∽△AEDGF=2;tanE=SADE=7.其中正确的是__________(写出所有正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是圆⊙O的直径,BC是⊙O的切线,连结AC交⊙O于点D,E上一点,连结AE、BE,BEAC于点F,且AE2=EFEB

(1)求证:CB=CF.

(2)若点E到弦AD的距离为1,cosC=,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是_____,(请直接填写序号)

223;②四边形的内角和与外角和相等;③的立方根为4;

④一元二次方程x2﹣6x=10无实数根;

⑤若一组数据7,4,x,3,5,6的众数和中位数都是5,则这组数据的平均数也是5.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲,乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.

(1)求租用一辆甲型汽车,一辆乙型汽车的费用分别是多少元?

(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.

(3)该商业公司生产的此时令商品每件成本为15元,经过市场调研发现,这种商品在未来20天内的日销量m(件)与时间t(天)的函数关系:m=﹣2t+100;该商品每天的价格y(元/件)与时间t(天)的函数关系为:y=t+20(1t20),其中t取整数;在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润时间t(天)的增大而增大(含20天的日销售利润和第19天的日销售利润相等的情况),求a的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形网格中,点ABC在小正方形的顶点上.

1)在图中画出与△ABC关于直线l成轴对称的△ABC′;

2)在直线l上找一点P,使PB′+PC的长最短;

3)若△ACM是以AC为腰的等腰三角形,点M在小正方形的顶点上.这样的点M共有   个.

查看答案和解析>>

同步练习册答案