精英家教网 > 初中数学 > 题目详情

【题目】中,,点P是平面内不与点AC重合的任意一点,连接,将线段绕点P旋转得到线段,连结

1)观察猜想:如图1,当时,线段绕点P顺时针旋转得到线段,则的值是________,直线相交所成的较小角的度数是________

2)类比探究:如图2,当时,线段绕点P顺时针旋转得到线段.请直接写出相交所成的较小角的度数,并说明相似,求出的值;

3)拓展延伸:当时,且点P到点C的距离为,线段绕点P逆时针旋转得到线段,若点ACP在一条直线上时,求的值.

【答案】1160°;(2,直线AP相交所成的较小角的度数是45°;(3的值为

【解析】

解:(1)如图1中,延长的延长线于K,设J

都是等边三角形,

,直线相交所成的较小角的度数是60°

故答案为160°

2)如图2中,设O

都是等腰直角三角形,

,直线AP相交所成的较小角的度数是45°

3)如图3-1中,当点P的延长线上时,设,则

中,∵

如图3-2中,当点P落在上时,设,则

综上所述, 的值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线x轴交于AD两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(10),点B的坐标为(04),已知点Em0)是线段DO上的动点,过点EPE⊥x轴交抛物线于点P,交BC于点G,交BD于点H

1)求该抛物线的解析式;

2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;

3)在(2)的条件下,是否存在这样的点P,使得以PBG为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点到以原点为圆心,以1为半径的圆的距离为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2x+x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.

(1)如图1,连接CD,求线段CD的长;

(2)如图2,点P是直线AC上方抛物线上一点,PFx轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;

(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图一,菱形与菱形的顶点重合,点在对角线上,且.

1)问题发现:

的值为________

2)探究与证明:

将菱形绕点按顺时针方向旋转角(),如图二所示,试探究线段之间的数量关系,并说明理由;

3)拓展与运用:

菱形在旋转过程中,当点三点在一条直线上时,如图三所示,连接并延长,交于点,若,则的长为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.

1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?

2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元.

1)求文具袋和圆规的单价.

2)学校准备购买文具袋20个,圆规100个,文具店给出两种优惠方案:

方案一:每购买一个文具袋赠送1个圆规.

方案二:购买10个以上圆规时,超出10个的部分按原价的八折优惠,文具袋不打折.学校选择哪种方案更划算?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在中,是边的中点,点为边上的一个动点(与点不重合),过点,交边于点.联结,设

1)当时,求的面积;

2)如果点关于的对称点为,点恰好落在边上时,求的值;

3)以点为圆心,长为半径的圆与以点为圆心,长为半径的圆相交,另一个交点恰好落在线段上,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)

1)当x5时,写出yx之间的关系式,并说明每辆小车的停车费最少不低于多少元;

2)当x5时,写出yx之间的函数关系式(不必写出x的取值范围);

3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?

查看答案和解析>>

同步练习册答案