【题目】在
中,
,点P是平面内不与点A,C重合的任意一点,连接
,将线段
绕点P旋转
得到线段
,连结
.
(1)观察猜想:如图1,当
时,线段
绕点P顺时针旋转
得到线段
,则
的值是________,直线
与
相交所成的较小角的度数是________;
(2)类比探究:如图2,当
时,线段
绕点P顺时针旋转
得到线段
.请直接写出
与
相交所成的较小角的度数,并说明
与
相似,求出
的值;
(3)拓展延伸:当
时,且点P到点C的距离为
,线段
绕点P逆时针旋转
得到线段
,若点A,C,P在一条直线上时,求
的值.
![]()
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线
与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点
到以原点为圆心,以1为半径的圆的距离为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣
x2﹣
x+
与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.
(1)如图1,连接CD,求线段CD的长;
(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+
EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;
(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图一,菱形
与菱形
的顶点
重合,点
在对角线
上,且
.
![]()
(1)问题发现:
的值为________;
(2)探究与证明:
将菱形
绕点
按顺时针方向旋转
角(
),如图二所示,试探究线段
与
之间的数量关系,并说明理由;
(3)拓展与运用:
菱形
在旋转过程中,当点
,
,
三点在一条直线上时,如图三所示,连接
并延长,交
于点
,若
,
,则
的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.
(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?
(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元.
(1)求文具袋和圆规的单价.
(2)学校准备购买文具袋20个,圆规100个,文具店给出两种优惠方案:
方案一:每购买一个文具袋赠送1个圆规.
方案二:购买10个以上圆规时,超出10个的部分按原价的八折优惠,文具袋不打折.学校选择哪种方案更划算?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在
中,
,
,
.
是边
的中点,点
为边
上的一个动点(与点
、
不重合),过点
作
,交边
于点
.联结
、
,设
.
![]()
(1)当
时,求
的面积;
(2)如果点
关于
的对称点为
,点
恰好落在边
上时,求
的值;
(3)以点
为圆心,
长为半径的圆与以点
为圆心,
长为半径的圆相交,另一个交点
恰好落在线段
上,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)
(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;
(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);
(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com