精英家教网 > 初中数学 > 题目详情
10.若a是方程x2-2003x+1=0的一个根,则a2-2002a+$\frac{2003}{{a}^{2}+1}$=2002.

分析 根据一元二次方程的解的定义得到a2-2003a+1=0,然后把a2=2003a-1代入代数式进行变形即可得到代数式的值.

解答 解:∵a是方程x2-2003x+1=0的一个根,
∴a2-2003a+1=0,
∴a2=2003a-1,
∴原式=2003a-1-2002a+$\frac{2003}{2003a-1+1}$
=a-1+$\frac{1}{a}$
=$\frac{{a}^{2}+1}{a}$-1
=$\frac{2003a-1+1}{a}$-1
=2003-1
=2002.
故答案为2002.

点评 本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.如图,AB是⊙O的直径,OB=3,BC是⊙O的弦,∠ABC的平分线交⊙O于点D,连接OD,若∠BAC=20°,则$\widehat{AD}$的长等于$\frac{7}{6}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是$\frac{25π}{4}$+12(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.2003年10月15日,我国成功发射“神州”5号载人航天飞船.它先在一个椭圆形轨道上飞行4圈,约167676km,然后变轨进入离地面343km的以地球为中心的圆心的圆形轨道,在圆形轨道上飞行10圈后返回地面.若地球半径为6400km,试计算“神舟5号”航天飞船在椭圆形轨道和圆形轨道上共飞行了多少千米?并用科学记数法表示这一结果.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.某工业园区,今年第一季度新开工94个项目,总投资7429亿元.请将7429亿,用科学记数法表示为7.429×1011

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列各式:x2-y2,-x2+y2,-x2-y2,(-x)2+(-y)2,x4-y4中能用平方差公式分解因式的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:
(1)23×(-5)-(-3)÷$\frac{3}{128}$;
(2)-7×(-3)×(-0.5)+(-12)×(-2.6);
(3)(1$\frac{3}{4}$-$\frac{7}{8}$-$\frac{7}{12}$)÷(-$\frac{7}{8}$)+(-$\frac{7}{8}$)÷(1$\frac{3}{4}$-$\frac{7}{8}$-$\frac{7}{12}$);
(4)-|-$\frac{2}{3}$|-|-$\frac{1}{2}$×$\frac{2}{3}$|-|$\frac{1}{3}$-$\frac{1}{4}$|-|-3|

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知点(1,15),(3,15)在二次函数y=3x2+kx-2k的图象上,则此二次函数图象的顶点坐标是(2,12).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,∠DCB=60°,AD=2$\sqrt{3}$,BC=6$\sqrt{3}$,点G是线段AB中点,点F在线段BC上,连接GF,将线段GF绕点G逆时针旋转60°,得到线段GE,GE交CD于点H,连结DE,且DE⊥DC,则HE的长为$\frac{8\sqrt{21}}{3}$.

查看答案和解析>>

同步练习册答案