【题目】甲、乙两地相距720km,一列快车和一列慢车都从甲地驶往乙地,慢车先行驶1小时后,快车才开始行驶.已知快车的速度是120km/h,慢车的速度是80km/h,快车到达乙地后,停留了20min,由于有新的任务,于是立即按原速返回甲地.在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,这两次相遇时间间隔是多少?
【答案】在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,这两次相遇时间间隔是5小时.
【解析】
在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,第一次是从甲地驶往乙地时,快车追上慢车,根据追上时快车行驶的路程=慢车行驶的路程列方程求解;第二次是快车到达乙地后返回甲地时与慢车相遇,根据相遇时快车行驶的路程+慢车行驶的路程=甲、乙两地之间的路程×2列方程求解.
设从甲地驶往乙地时,快车行驶x小时追上慢车,由题意得
120x=80(x+1),
解得x=2,
则慢车行驶了3小时.
设在整个程中,慢车行驶了y小时,则快车行驶了(y﹣1﹣)小时,由题意得
120(y﹣1﹣)+80y=720×2,
解得y=8,
8﹣3=5(小时).
答:在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,这两次相遇时间间隔是5小时.
科目:初中数学 来源: 题型:
【题目】编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.
(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;
(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;
(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是直线AB上一点,OD平分∠AOC.
(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.
(2)若∠AOD和∠DOE互余,且∠AOD=∠AOE,请求出∠AOD和∠COE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点 A1,第二次将点A1,向右移动4个单位长度到达点A2,第三次将点A2向左移动6个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点An,如果点An与原点的距离等于19,那么n的值是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,AD=7,点E,F分别在边AD、BC上,且B、F关于过点E的直线对称,如果以CD为直径的圆与EF相切,那么AE= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).
(1)当t为何值时,射线OC与OD重合;
(2)当t为何值时,∠COD=90°;
(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com