【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ①a+b+c<0;②a–b+c<0;③b+2a<0;④abc>0,其中正确的是 (填写正确的序号)。
【答案】②③.
【解析】
试题由x=1时,y=a+b+C>0,即可判定①错误;由x=-1时,y=a-b+c<0,即可判定②正确;由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上得到c>0,又对称轴为x=<1,得到2a+b<0,由此可以判定③正确;由对称轴为x=>0即可判定④错误.
试题解析:①当x=1时,y=a+b+C>0,∴①错误;
②当x=-1时,y=a-b+c<0,∴②正确;
③由抛物线的开口向下知a<0,
与y轴的交点为在y轴的正半轴上,
∴c>0,
∵对称轴为x=<1,
∴-b>2a,
∴2a+b<0,
∴③正确;
④对称轴为x=>0,
∴a、b异号,即b>0,
∴abc<0,
∴④错误.
∴正确结论的序号为②③.
考点: 二次函数图象与系数的关系.
科目:初中数学 来源: 题型:
【题目】如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EFDE.
(1)求证:DF是⊙O的切线;
(2)连接AF交DE于点M,若 AD4,DE5,求DM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于A(-1,0),B(3,0)两点,与轴交于点C,顶点为D,下列结论正确的是( )
A. abc<0 B. 3a+c=0 C. 4a-2b+c<0 D. 方程ax2+bx+c=-2(a≠0)有两个不相等的实数根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,且BC=2AF。
(1)求证:四边形ADEF为矩形;
(2)若∠C=30°、AF=2,写出矩形ADEF的周长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一块长方形镜面玻璃的四周,镶上与它的周长相等的边框,制成一面镜子.镜子的长与宽的比是3:1.已知镜面玻璃的价格是每平方米100元,边框的价格是每米20元,另外制作这面镜子还需加工费55元.如果制作这面镜子共花了210元,求这面镜子的长是__________,宽是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,-1),B(2,3),点P为x轴上一点,当|PA-PB|的值最大时,点P的坐标为( )
A.(-1,0)B.(,0)C.(,0)D.(1,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,直线l1:y=kx+4与y轴交于点A,与x轴交于点B.
(1)请直接写出点A的坐标:______;
(2)点P为线段AB上一点,且点P的横坐标为m,现将点P向左平移3个单位,再向下平移4个单位,得点P′在射线AB上.
①求k的值;
②若点M在y轴上,平面内有一点N,使四边形AMBN是菱形,请求出点N的坐标;
③将直线l1绕着点A顺时针旋转45°至直线l2,求直线l2的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.
(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;
(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?
(3)若k=3,a=﹣,则喷出的抛物线水线能否达到岸边?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com