精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点A D C F在同一直线上,AB=DE,AD=CF,添加下列条件后,仍不能判断△ABC≌△DEF的是 ( )

A. BC=EFB. A=EDFC. ABDED. BCA=F

【答案】D

【解析】

首先根据等式的性质可得AC=DF,然后利用SSSSASASAAAS进行分析即可.

AD=CF

AD+CD=CF+DC

AC=DF

A. 添加BC=EF可利用SSS定理判定ABC≌△DEF,故此选项不合题意;

B. 添加∠A=EDF可利用SAS定理判定ABC≌△DEF,故此选项不合题意;

C. 添加ABDE可证出∠A=EDC,可利用SAS定理判定ABC≌△DEF,故此选项不合题意;

D. 添加∠BCA=F不能判定ABC≌△DEF,故此选项符合题意;

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,完成下列推理过程:

如图所示,点E在△ABC外部,点DBC边上,DEACF,若∠1=∠3,∠E=∠C,AE=AC,求证:△ABC≌△ADE.

证明:∵ ∠E=∠C(已知),

∠AFE=∠DFC_________________,

∴∠2=∠3______________________,

又∵∠1=∠3_________________,

∴ ∠1=∠2(等量代换),

__________+∠DAC= __________+∠DAC______________________,

∠BAC =∠DAE,

△ABC和△ADE

∴△ABC≌△ADE_________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读理解)

课外兴趣小组活动时,老师提出了如下问题:

如图1,△ABC中,若AB8AC6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DEAD,请根据小明的方法思考:

(1)由已知和作图能得到△ADC≌△EDB的理由是_____.

A.SSS B.SAS C.AAS D.HL

(2)求得AD的取值范围是______.

A.6AD8 B.6≤AD≤8 C.1AD7 D.1≤AD≤7

(感悟)

解题时,条件中若出现中点”“中线字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.

(问题解决)

(3)如图2AD是△ABC的中线,BEACE,交ADF,且AEEF.求证:ACBF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形网格中,点ABC在小正方形的顶点上.

1)在图中画出与△ABC关于直线l成轴对称的△ABC′;

2)在直线l上找一点P,使PB′+PC的长最短;

3)若△ACM是以AC为腰的等腰三角形,点M在小正方形的顶点上.这样的点M共有   个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】生活中处处有数学.

1)如图(1)所示,一扇窗户打开后,用窗钩将其固定,这里所运用的数学原理是   

2)如图(2)所示,在新修的小区中,有一条字形绿色长廊,其中,在三段绿色长廊上各修一小凉亭,且,点的中点,在凉亭之间有一池塘,不能直接到达,要想知道之间的距离,只需要测出线段的长度,这样做合适吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知点A(1,a是反比例函数的图象上一点直线与反比例函数的图象的交点为点BDB(3,﹣1),

(1)求反比例函数的解析式

(2)求点D坐标并直接写出y1y2x的取值范围

(3)动点Px,0)x轴的正半轴上运动当线段PA与线段PB之差达到最大时求点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,

(1)求k的值;

(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;

(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】重庆八中宏帆中学某年级为了选拔参加全国汉字听写大赛重庆赛区比赛的队员,特在年级举行全体学生的汉字听写比赛,首轮每位学生听写汉字39个.现随机抽取了部分学生的听写结果,绘制成如图的图表.

组别

正确字数x

人数

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

n

根据以上信息完成下列问题:

(1)统计表中的m=   ,n=   ,并补全条形统计图;

(2)已知该年级共有1500名学生,如果听写正确的字的个数不少于24个则进入第二轮的比赛,请你估计本次听写比赛顺利进入第二轮的学生人数;

(3)第二轮比赛过后,为了更有针对性地应对本次大赛,该年级决定从没有担任班主任的5个语文老师(其中3个男老师2个女老师)中随机抽取两个老师对胜出的学生进行培训、辅导.请用树状图或列表法求出抽取的两个老师恰好都是男老师的概率.

查看答案和解析>>

同步练习册答案