6£®Ò»´±33²ãµÄ´óÂ¥ÓÐÒ»²¿µçÌÝÍ£ÔÚµÚÒ»²ã£¬ËüÒ»´Î×î¶àÄÜÈÝÄÉ32ÈË£¬¶øÇÒÖ»ÄÜÔÚµÚ2²ãÖÁµÚ33²ãÖеÄijһ²ãÍ£Ò»´Î£®¶ÔÓÚÿ¸öÈËÀ´Ëµ£¬ËûÍùÏÂ×ßÒ»²ãÂ¥Ìݸе½1·Ö²»ÂúÒ⣬ÍùÉÏ×ßÒ»²ãÂ¥Ìݸе½3·Ö²»ÂúÒ⣮ÏÖÔÚÓÐ32¸öÈËÔÚµÚÒ»²ã£¬²¢ÇÒËûÃÇ·Ö±ðסÔÚµÚ2ÖÁµÚ33²ãµÄÿһ²ã£¬ÎÊ£ºµçÌÝÍ£ÔÚÄÄÒ»²ã£¬¿ÉÒÔʹÕâ32¸öÈ˲»ÂúÒâµÄ×Ü·Ö´ïµ½×îС£¿×îСֵÊǶàÉÙ£¿£¨ÓÐЩÈË¿ÉÒÔ²»³ËµçÌݶøÖ±½Ó´ÓÂ¥ÌÝÉÏÂ¥£©
½â ÒÀÌâÒ⣬Õâ32¸öÈËÇ¡ºÃÊǵÚ2ÖÁµÚ33²ã¸÷ס1ÈË£¬¶ÔÓÚÿ¸ö³ËµçÌÝÉÏ¡¢ÏÂÂ¥µÄÈË£¬ËûËùסµÄ²ãÊýÒ»¶¨²»Ð¡ÓÚÖ±½ÓÉÏÂ¥µÄÈËËùËùסµÄ²ãÊý£¬ÉèµçÌÝÍ£ÔÚµÚx²ã£¬ÔÚµÚÒ»²ãÓÐy¸öÈËûÓг˵çÌݶøÖ±½ÓÉÏÂ¥£¬ÄÇô
²»³ËµçÌÝÖ±½ÓÉÏÂ¥µÄ²»ÂúÒâ×Ü·ÖΪ$\frac{3y£¨y+1£©}{2}$   ¢Ù£¬
³ËµçÌݵ½x²ãºó£¬ÔÙÍùÉÏ×ß²»ÂúÒâ×Ü·ÖΪ$\frac{3£¨33-x£©£¨34-x£©}{2}$¢Ú£¬
³ËµçÌݵ½x²ãºó£¬ÔÙÍùÏÂ×ßµÄÂúÒâ×Ü·ÖΪ$\frac{3£¨x-1-y£©£¨x-y£©}{2}$¢Û£¬
Ôò²»ÂúÒâ×Ü·ÖSΪ¢Ù£¬¢Ú£¬¢ÛµÄºÍ£¬ÕûÀíµÃS=3x2+3y2-3xy-102x+3y+1683£®

·ÖÎö ¢Ù½áºÏÒÑÖª¿ÉÖª£¬Ã»³ËµçÌݵÄyÈËÓ¦¸ÃסÔÚ2£¬3£¬¡­£¬y+1²ã£¬ËûÃÇÉÏ¥¥²ãÊý·Ö±ðΪ£º1£¬2£¬¡­£¬y£¬¸Ã×éÊýÏà¼Ó³Ë3¼´¿ÉµÃ³ö½áÂÛ£»
¢ÚµçÌݵ½x²ãºó£¬ÍùÉÏ×ßµÄÓÐ33-xÈË£¬ËûÃÇÉÏ¥¥²ãÊý·Ö±ðΪ£º1£¬2£¬¡­£¬33-x£¬¸Ã×éÊýÏà¼Ó³Ë3¼´¿ÉµÃ³ö½áÂÛ£»
¢ÛµçÌݵ½x²ãºó£¬ÍùÏÂ×ßµÄÓÐx-1-yÈË£¬ËûÃÇÏÂ¥¥²ãÊý·Ö±ðΪ£º1£¬2£¬¡­£¬x-1-y£¬¸Ã×éÊýÏà¼Ó³Ë3¼´¿ÉµÃ³ö½áÂÛ£»
¢Ü½«¢Ù¢Ú¢ÛµÃ³öµÄÊý¾ÝÏà¼ÓÕûÀí¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£ºÓɳ£Ê¶¿ÉÖª£¬Ã»³ËµçÌݵÄyÈËÓ¦¸Ã·Ö²¼ÔÚ2£¬3£¬¡­£¬y+1²ã£®
¹Ê²»³ËµçÌÝÖ±½ÓÉÏÂ¥µÄ²»ÂúÒâ×Ü·ÖΪ£º3¡Á£¨1+2+3+¡­+y£©=$\frac{3y£¨y+1£©}{2}$£»
µçÌݵ½x²ãºó£¬ÍùÉÏ×ßµÄÓÐ33-xÈË£¬ÇÒÿ²ãסһÈË£¬
¹Ê³ËµçÌݵ½x²ãºó£¬ÔÙÍùÉÏ×ß²»ÂúÒâ×Ü·ÖΪ£º3¡Á£¨1+2+¡­+33-x£©=$\frac{3£¨33-x£©£¨34-x£©}{2}$£»
µçÌݵ½x²ãºó£¬ÍùÏÂ×ßµÄÓÐx-1-yÈË£¬ÇÒy+1²ãÒÔÉÏÿ²ãסһÈË£¬
¹Ê³ËµçÌݵ½x²ãºó£¬ÔÙÍùÏÂ×ßµÄÂúÒâ×Ü·ÖΪ£º3¡Á£¨1+2+¡­+x-1-y£©=$\frac{3£¨x-1-y£©£¨x-y£©}{2}$£»
Ôò²»ÂúÒâ×Ü·ÖSΪ¢Ù£¬¢Ú£¬¢ÛµÄºÍ£¬S=$\frac{3y£¨y+1£©}{2}$+$\frac{3£¨33-x£©£¨34-x£©}{2}$+$\frac{3£¨x-1-y£©£¨x-y£©}{2}$=3x2+3y2-3xy-102x+3y+1683£®
¹Ê´ð°¸Îª£º¢Ù$\frac{3y£¨y+1£©}{2}$£»¢Ú$\frac{3£¨33-x£©£¨34-x£©}{2}$£»$\frac{3£¨x-1-y£©£¨x-y£©}{2}$£»$\frac{3£¨x-1-y£©£¨x-y£©}{2}$£®

µãÆÀ ±¾Ì⿼²éµÄÊýµÄ±ä»¯¹æÂÉ£¬½âÌâµÄ¹Ø¼üÊÇÕÒ³öÊýÁÐ1£¬2£¬¡­£¬nµÄºÍ£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬µ«ÊÇÔÚÊýÁÐÇóºÍÖÐÈÝÒ×ʧ·Ö£¬½«¸Ã×éÊýÁÐÊ×λÏà¼Ó¼´¿ÉµÃ³ö¹æÂÉ£¬´Ó¶øµÃ³ö½áÂÛ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÏÈÒòʽ·Ö½â£¬ÔÙ¼ÆËãÇóÖµ£º
£¨1£©x£¨x-y£©2-y£¨y-x£©2£¬ÆäÖÐx=$\frac{3}{2}$£¬y=$\frac{1}{2}$£»
£¨2£©a2b+ab2£¬ÆäÖÐa+b=133£¬ab=1000£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®¼ÆË㣺
£¨1£©$\frac{2}{{3x}^{2}}$+$\frac{3}{4y}$-$\frac{5}{6xy}$£»
£¨2£©$\frac{5a}{{6b}^{2}c}$-$\frac{7b}{12{ac}^{2}}$+$\frac{11c}{{8a}^{2}b}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãOÊÇ×ø±êÔ­µã£¬¹ýµãA£¨1£¬2£©µÄÖ±Ïßy=kx+bÓëxÖá½»ÓÚµãB£¬ÇÒS¡÷AOB=4£¬Çó¸ÃÖ±ÏߵĽâÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬AB¡ÎCD£¬AB=CD=BC£¬µãEÊÇBCÑÓ³¤ÏßÉÏÒ»µã£¬Á¬½ÓAE£¬·Ö±ð½»BD¡¢CDÓÚµãG¡¢F£¬ÈôAG=$\sqrt{5}$£¬GF=1£¬ÔòEF=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èçͼ£¬Ïß¶ÎABÊǰ뾶Ϊ6µÄ¡ÑOµÄÖ±¾¶£¬µãCÊÇ»¡ABµÄÖе㣬µãM¡¢NÔÚÏß¶ÎABÉÏ£¨AM£¼BN£©£¬MN=5£®Èô¡ÏMCN=45¡ã£¬Ïß¶ÎAMµÄ³¤¶ÈΪ3»ò4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èçͼ£¬¾ØÐÎABCDÖУ¬EÊÇAD±ßÉÏÒ»µã£¬FÊÇBCÑÓ³¤ÏßÒ»µã£¬EF½»CDÓÚµãG£¬Á¬½ÓBE£®ÈôBEƽ·Ö¡ÏAEF£¬GÊÇCD±ßµÄÖе㣬tan¡ÏABE=$\frac{1}{2}$£¬Ôò$\frac{DE}{AE}$µÄֵΪ$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èçͼ£¬Ôڵȱߡ÷ABCÖУ¬µãDÊÇBCÖе㣬µãEÔÚBAµÄÑÓ³¤ÏßÉÏ£¬ED=EC£¬ACºÍED½»ÓÚµãF£¬ÈôAE=$\frac{12}{5}$£¬ÔòCF=$\frac{18}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Çë¼ÆË㣺£¨1+¦Ð£©0+£¨-$\frac{1}{3}$£©-2+2sin60¡ã-|$\sqrt{3}$+1|=9£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸