精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,DE分别是ABAC上的点,BECD交与点O,给出下列四个条件:①∠DBO=ECO,②∠BDO=CEO,③BD=CE,④OB=OC.

1)从上述四个条件中,任选两个为条件,可以判定ABC是等腰三角形?写出所有可能的情况.

2)选择(1)中的某一种情形,进行说明.

【答案】1)①③,①④,②③和②④;(2)以①④为条件,理由见解析.

【解析】

1)要证ABC是等腰三角形,就要证∠ABC=ACB,根据已知条件即可找到证明∠ABC=ACB的组合;

2)可利用DOBEOC全等,得出OC=OB,再得出∠OCB与∠OBC相等,就能证明∠ABC与∠ACB相等.

1)①③,①④,②③和②④;

2)以①④为条件,理由:

OB=OC

∴∠OBC=OCB

又∵∠DBO=ECO

∴∠DBO+OBC=ECO+OCB,即∠ABC=ACB

AB=AC

∴△ABC是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=-x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=-x+3交于C、D两点.连接BD、AD.

(1)求m的值.

(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某公路检测中心在一事故多发地带安装了一个测速仪,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用的时间为0.9秒.已知B=30°,C=45°

(1)求B,C之间的距离;(保留根号)

(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MNAMMNMBNMNN

(1)MN=AM+BN成立吗?为什么?

(2)若过点C在△ABC内作直线MNAMMNMBNMNN,则AMBNMN之间有什么关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,B,C三点在同一直线上,分别以AB,BCAB>BC)为边,在直线AC的同侧作等边ΔABD和等边ΔBCE,连接AEBD于点M,连接CDBE于点N,连接MN. 以下结论:①AE=DC,②MN//AB,③BDAE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下列材料,再解答下列问题:

题:分解因式:

解:将看成整体,设,则原式=

再将还原,得原式=.

上述解题用到的是整体思想整体思想是数学解题中常用的一种思想方法,请你仿照上面的方法解答下列问题:

(1)因式分解: .

(2)因式分解: .

(3)求证:若为正整数,则式子的值一定是某一个正整数的平方.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD的角平分线,,垂足分别为点E、点F,连接EFAD相交于点O,下列结论不一定成立的是  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】机械厂加工车间有90名工人,平均每人每天加工大齿轮8个或小齿轮14个,已知1个大齿轮与2个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.

(1)第一天,1号展厅没有被选中的概率是  

(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.

查看答案和解析>>

同步练习册答案