【题目】如果的对角线相交于点,那么在下列条件中,能判断为菱形的是( )
A. ∠OAB=∠OBA B. ∠OAB=∠OBC
C. ∠OAB=∠OCD D. ∠OAB=∠OAD
科目:初中数学 来源: 题型:
【题目】自2017年3月起,成都市中心城区居民用水实行以户为单位的三级阶梯收费办法:
第I级:居民每户每月用水18吨以内含18吨每吨收水费a元;
第Ⅱ级:居民每户每月用水超过18吨但不超过25吨,未超过18吨的部分按照第Ⅰ级标准收费,超过部分每吨收水费b元;
第Ⅲ级:居民每户每月用水超过25吨,未超过25吨的部分按照第I、Ⅱ级标准收费,超过部分每吨收水费c元.
设一户居民月用水x吨,应缴水费为y元,y与x之间的函数关系如图所示
(1)根据图象直接作答:a= ,b= ;
(2)求当x≥25时y与x之间的函数关系;
(3)把上述水费阶梯收费办法称为方案①,假设还存在方案②:居民每户月用水一律按照每吨4元的标准缴费,请你根据居民每户月“用水量的大小设计出对居民缴费最实惠的方案.(写出过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.
(1)C(4,),D(4,),E(4,)三点中,点 是点A,B关于直线x=4的等角点;
(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;
(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点A(2,0)的两条直线,分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
(1)求点B的坐标;
(2)若△ABC的面积为4,求的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在南开中学校庆78周年之际,由学生处和美术教研组共同策划、组织了“南开中学校园明信片设计大赛”。获得此次设计大赛组织一等奖的、、、四个班级一共有75件作品获奖,已知班参赛作品的获奖率为30%,班参赛作品的获奖率为40%。请结合两幅统计图所提供的信息,解决下列问题:
(1)四个班级一共选送了多少件作品参赛,获奖率最高的班级是哪个班;
(2)请将条形统计图补充完整;
(3)班的小欣和小怡同学在本次大赛中荣获个人一等奖,此外、两班各有一名同学荣获个人一等奖。南开中学校友会准备从这4名同学的作品中任选两件,制作成新年贺卡送给老校友。请用列表法或画树状图的方法求出这两件作品分别来自不同班级,且其中一件是小欣或小怡作品的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求证:四边形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一个横截面是正方形的长方体平均截成段后,每段长分米,这样表面积就增加了平方分米,原来长方体的表面积是________平方分米,体积是________立方分米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, OAB与ODC是位似图形 。
试问:(1)AB与CD平行吗?请说明理由 。
(2)如果OB=3,OC=4,OD=3.5.试求OAB与ODC的相似比及OA的长 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC=6,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
(1)请判断四边形AEA′F的形状,并说明理由;
(2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com