精英家教网 > 初中数学 > 题目详情

【题目】完成下面的证明,如图点DEF分别是三角形ABC的边BCCAAB上的点,DEBADFCA.求证:∠FDE=∠A

证明:∵DEAB

∴∠FDE=∠      

DFCA

∴∠A=∠      

∴∠FDE=∠A   

【答案】BFD,两直线平行,内错角相等,BFD,两直线平行,同位角相等,等量代换

【解析】

根据平行线的性质得出∠FDE=BFD,∠A=BFD,推出即可;

解:证明:∵DEAB

∴∠FDE=∠BFD(两直线平行,内错角相等)

DFCA

∴∠A=∠BFD(两直线平行,同位角相等)

∴∠FDE=∠A(等量代换).

故答案为:BFD,两直线平行,内错角相等,BFD,两直线平行,同位角相等,等量代换.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以RtABC的斜边BC为边,在ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO.若AB4AO6,则AC的长等于(  )

A. 12B. 16C. 8+6D. 4+6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学兴趣小组开展了一次活动,过程如下:如图1,等腰直角△ABC中,AB=AC,∠BAC=90°,小敏将三角板中含45°角的顶点放在A上,斜边从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.

(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;
(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2 . 同组的小颖和小亮随后想出了两种不同的方法进行解决:
小颖的想法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2);
小亮的想法:将△ABD绕点A逆时针旋转90°得到△ACG,连接EG(如图3);
请你从中任选一种方法进行证明.
(3)小敏继续旋转三角板,请你继续研究:当135°<α<180°时(如图4),等量BD2+CE2=DE2是否仍然成立?请作出判断,不需要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图甲,的关系是什么?并写出推理过程;

2)如图乙,,直接写出的数量关系_______________________

3)如图丙,,直接写出的数量关系_____________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店经销一种泰山旅游纪念品,4月的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.
(1)求该种纪念品4月份的销售价格;
(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC, ,AD=6,BC=8, ,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).

(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积.
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC为一个平行四边形的三个顶点ABC三点的坐标分别为(33)(64)(46)

(1)请直接写出这个平行四边形第四个顶点的坐标;

(2)求这个平行四边形的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC的三个顶点的坐标分别是A01),B20),C23.将三角形ABC先向左平移3个单位 ,再向下平移5个单位得三角形.

1)画出

2)求ABC的面积;

3)若点Py轴上,且ABP的面积等于ABC的面积,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个装有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.

1)当4≤x≤12时,求yx的函数解析式;

2)每分进水、出水各多少升?

3)第   分钟时该容器内的水恰好为10升.

查看答案和解析>>

同步练习册答案