【题目】已知抛物线,将抛物线在轴左侧部分沿轴翻折,翻折后的部分和抛物线与轴交点以及轴右侧部分组成图形,已知
(1)求抛物线的对称轴;
(2)当时,
①若点在图形上,求的值;
②直接写出线段与图形的公共点个数;
(3)当n<0时,若线段与图形恰有两个公共点,直接写出的取值范围.
【答案】(1);(2)①5;②3;3)
【解析】
(1)根据抛物线的对称轴公式求解即可;
(2)①可先求出点A关于x轴的对称点,再代入已知的抛物线求解;②画出函数图象,结合函数图象即得答案;
(3)根据图象找出线段与图形恰有两个公共点和恰有一个公共点时对应的n的值,问题即得解决.
解:(1)抛物线的对称轴是:直线;
(2)①当n=0时,,
∵A(-1,m)在图形G上,∴A(-1,m)关于x轴的对称点(―1,―m)在图象上,∴,解得:m=5.
② ∵y轴左侧部分的解析式是,当时,,∴线段与图形的公共点个数是3个,如图.:
(3)当线段与图形恰有两个公共点时,如图1,此时,
当线段与图形恰有一个公共点时,即的顶点在线段上,如图2,此时,
∴的取值范围是:.
科目:初中数学 来源: 题型:
【题目】西瓜经营户以2元/千克的价格购进批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售。经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元。该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
(1)若设应将每千克的售价降低x元,那么每千克的利润为_____元,降价后何天售出数量为______千克;
(2)请在第(1)小题的基础上,列出方程把此题解答完整。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=3,BC=4,点E、F分别在BC与CD上,且∠EAF=45°.如图甲,若EA=EF,则EF=_____;如图乙,若CE=CF,则EF=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)为120万元,在销售过程中发现,年销售量(万件)与销售单价(元)之间存在着如图所示的一次函数关系.
⑴ 直接写出关于的函数关系式为 .
⑵ 市场管理部门规定,该产品销售单价不得超过100元,该公司销售该种产品当年获利55万元,求当年的销售单价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2+2x+3与x轴交于A,B两点,点A在点B的左侧.
(1)求A,B两点的坐标和此抛物线的对称轴;
(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
在数学课上,老师提出利用尺规作图完成下面问题:
小明的作法如下:
老师说:“小明的作法正确.”
请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是____;
(2)∠APB=∠ACB的依据是______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,y′)的纵坐标满足y′=,那么称点Q为点P的“关联点”.
(1)请直接写出点(3,5)的“关联点”的坐标 ;
(2)如果点P在函数y=x﹣2的图象上,其“关联点”Q与点P重合,求点P的坐标;
(3)如果点M(m,n)的“关联点”N在函数y=2x2的图象上,当0≤m≤2时,求线段MN的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列一组图形,它反映了图形中点的个数与第个图形之间的某种变化规律.
(1)填写下表:
第个图形 | 1 | 2 | 3 | 4 | … |
图形中所有点的个数 | … |
(2)设第个图形中点的个数是个,试写出与的关系式 .
(3)若某个图形中所有点的个数是66个,求这是第几个图形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,则下列结论:
①abc>0
②a﹣b+c<0;
③2a+b+c>0;
④x(ax+b)≤a+b;
其中正确的有_____
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com