【题目】如图,平面直角坐标系中,O为坐标原点,正方形OABC的定点A,B都在反比例函数y=(k>0,x>0)的图象上,边BC与x轴交于点D,则 的值为( )
A. B. C. D.
【答案】D
【解析】
过A作AE⊥x轴于E,过B作BF⊥x轴于F,BG⊥AE于G,于是得到EF=BG,BF=GE,根据正方形的性质得到OA=AB,∠OAB=90°,根据余角的性质得到∠OAE=∠ABG,根据全等三角形的性质得到AG=OE,AE=BG,设A(a,),得到OE=AG=a,AE=BG=,求得B(+a,-a),得方程求得k=a2(负值舍去),过C作CH⊥x轴于H,根据相似三角形的性质即可得到结论.
解:过A作AE⊥x轴于E,过B作BF⊥x轴于F,BG⊥AE于G,
则EF=BG,BF=GE,
∵四边形OABC是正方形,
∴OA=AB,∠OAB=90°,
∴∠OAE+∠BAE=∠BAE+∠ABG=90°,
∴∠OAE=∠ABG,
在△AOE与△BAG中,,
∴△AOE≌△BAG,
∴AG=OE,AE=BG,
设A(a,),
∴OE=AG=a,AE=BG=,
∴B(+a,-a),
∴(+a)(-a)=k,
解得k=a2(负值舍去),
∴B点的纵坐标为a,
BF=a,
过C作CH⊥x轴于H,
同理△AOE≌△OCH,
∴CH=OE=a,
∵CH⊥x轴,BF⊥x轴,
∴CH∥BF,
∴△BFD∽△CHD,
∴== =,
故选:D.
科目:初中数学 来源: 题型:
【题目】如图是反比例函数y=的图象的一个分支,对于给出的下列说法:
①常数k的取值范围k>2;②另一分支在第三象限;③在函数图象上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;④在函数图象的某一分支上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2.其中正确的是__________.(在横线上填上正确的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F,G,求证:PF+PG=AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知于点D,AE平分
(1)试探究与的关系;
(2)若F是AE上一动点,当F移动到AE之间的位置时,,如图2所示,此时的关系如何?
(3)若F是AE上一动点,当F继续移动到AE的延长线上时,如图3,,①中的结论是否还成立?如果成立请说明理由,如果不成立,写出新的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:
填写下表:
中位数 | 众数 | |
随机抽取的50人的社会实践活动成绩单位:分 |
估计光明中学全体学生社会实践活动成绩的总分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,
(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度数
(2)写出∠DAE与∠C-∠B的数量关系,并证明你的结论
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,点O是△ABC内的一点,∠BOC=130°.
(1)求证:OB=DC;
(2)求∠DCO的大小;
(3)设∠AOB=α,那么当α为多少度时,△COD是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读一段文字,再回答下列问题:
已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为 ,同时,当两点所在的直线在坐标轴上或平行于x轴或垂直于x轴距离公式可简化成|x2-x1|或|y2-y1|.
(1)已知A(3,5),B(-2,-1),试求A,B两点的距离;
(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为-1,试求A,B两点的距离.
(3)已知一个三角形各顶点坐标为A(0,6),B(-3,2),C(3,2),你能断定此三角形的形状吗?说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)画出△ABC关于y轴的对称图形,其中A、B、C的对应点分别为,,
(2)= .
(3)画出以为腰的等腰△CAD,点D在y轴右侧的小正方形的顶点上,且△CAD的面积为6 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com