精英家教网 > 初中数学 > 题目详情

【题目】数学老师布置了一道思考题“计算:(-)÷()”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.

小明的解法:原式的倒数为()÷()=()×(-12)=-4+10=6,所以(-)÷()=

(1)请你判断小明的解答是否正确,并说明理由.

(2)请你运用小明的解法解答下面的问题.

计算:(-)÷(+).

【答案】(1)正确,理由见详解;(2)-

【解析】

(1)正确,利用倒数的定义判断即可;
(2)求出原式的倒数,即可确定出原式的值.

解:(1)正确,理由为:一个数的倒数的倒数等于原数;

(2)原式的倒数为(+)÷(-

= (+) ×(-24)=-8+4-9= -13,

则(-)÷(+)= -

故答案为:(1)正确理由见详解;(2)-

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:(直接写结果)

1- 5+ 2 =

2-5-2=

35--2=

4)(-5×-2=

5(-2)÷(-6)=

6=

7=

8=

9=

10=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三月底,某学校迎来了以学海通识品墨韵,开卷有益览书山为主题的学习节活动.为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了二十四节气之旅项目,并开展了相关知识竞赛.该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查.

收集数据如下:

七年级:

八年级:

整理数据如下:

分析数据如下:

根据以上信息,回答下列问题:

(1)a=______b=______

(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性)

(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组正方形按如图所示的方式放置,其中顶点B1y轴上,顶点C1、E1、E2、C2、E3、E4、…x轴上,已知正方形A1B1C1D1的边长为1,B1C1O=60°,B1C1B2C2B3C3,则正方形A2018B2018C2018D2018的边长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.

(1)求证:AFN≌△CEM;

(2)若∠CMF=107°,CEM=72°,求∠NAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ab满足,且有理数abc在数轴上对应的点分别为ABC

__________________

D是数轴上A点右侧一动点,点E、点F分别为CDAD中点,当点D运动时,线段EF的长度是否发生变化,若变化,请说明理由,若不变,请求出其值;

若点ABC在数轴上运动,其中点C以每秒1个单位的速度向左运动,同时点A和点B分别以每秒3个单位和每秒2个单位的速度向右运动请问:是否存在一个常数m使得不随运动时间t的改变而改变若存在,请求出m和这个不变化的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出迎元旦促销打折活动,具体优惠情况如表:

购物总金额(原价)

折扣

不超过5000元的部分

九折

超过5000元且不超过10000元的部分

八折

超过10000元且不超过20000元的部分

七折

……

……

例如:若购买的商品原价为15000元,实际付款金额为:

5000×90%+100005000×80%+1500010000×70%12000元.

1)若这种品牌电脑的原价为8000/台,请求出张老师实际付款金额;

2)已知张老师购买一台该品牌电脑实际付费5700元.

①求该品牌电脑的原价是多少元/台?

②若售出这台电脑商场仍可获利14%,求这种品牌电脑的进价为多少元/台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=kx2+(k﹣2)x﹣2(其中k0).

(1)求该抛物线与x轴的交点及顶点的坐标(可以用含k的代数式表示);

(2)若记该抛物线顶点的坐标为P(m,n),直接写出|n|的最小值;

3)将该抛物线先向右平移个单位长度,再向上平移个单位长度,随着k的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx3A10),B(﹣30),直线AD交抛物线于点D,点D的横坐标为﹣2,点Pmn)是线段AD上的动点.

1)求直线AD及抛物线的解析式;

2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度lm的关系式,m为何值时,PQ最长?

3)在平面内是否存在整点(横、纵坐标都为整数)R,使得PQDR为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案