精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连接BD,如果∠DAC=∠DBA,那么 的值是

【答案】
【解析】解:如图,由旋转的性质得到AB=AD,∠CAB=∠DAB, ∴∠ABD=∠ADB,
∵∠CAD=∠ABD,
∴∠ABD=∠ADB=2∠BAD,
∵∠ABD+∠ADB+∠BAD=180°,
∴∠ABD=∠ADB=72°,∠BAD=36°,
过D作∠ADB的平分线DF,
∴∠ADF=∠BDF=∠FAD=36°,
∴∠BFD=72°,∴AF=DF=BD,
∴△ABD∽△DBF,
,即
解得 =
故答案为:

由旋转的性质得到AB=AD,∠CAB=∠DAB,根据三角形的内角和得到∠ABD=∠ADB=72°,∠BAD=36°,过D作∠ADB的平分线DF推出△ABD∽△DBF,解方程即可得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).

(1)请画出△A1B1C1 , 使△A1B1C1与△ABC关于x轴对称;
(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2 , 并直接写出点B旋转到点B2所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)= 若对于任意两个不等实数x1 , x2 , 都有 >1成立,则实数a的取值范围是(
A.[1,3)
B.[ ,3)
C.[0,4)
D.[ ,4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为6,E,F分别是AB,BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM.
(2)当AE=2时,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.

(1)求抛物线的解析式以及顶点坐标;
(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;
(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

从上表可知,下列说法中,错误的是(
A.抛物线于x轴的一个交点坐标为(﹣2,0)
B.抛物线与y轴的交点坐标为(0,6)
C.抛物线的对称轴是直线x=0
D.抛物线在对称轴左侧部分是上升的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知向量
(1)求做:向量 分别在 方向上的分向量 :(不要求写作法,但要在图中明确标出向量 ).
(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设 = = ,那么试用 表示向量 (请直接写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于非零向量 下列条件中,不能判定 是平行向量的是(
A.
B. +3 = =3
C. =﹣3
D.| |=3| |

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP=2cm.将∠O沿PQ折叠,点O落在平面内点C处.
(1)①当PC∥QB时,求OQ的长度;
②当PC⊥QB时,求OQ的长.
(2)当折叠后重叠部分为等腰三角形时,求OQ的长.

查看答案和解析>>

同步练习册答案