【题目】某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,经过调查发现,销售单价每降低5元,每天可多售出10件,下列说法错误的是( )
A.销售单价降低15元时,每天获得利润最大
B.每天的最大利润为1250元
C.若销售单价降低10元,每天的利润为1200元
D.若每天的利润为1050元,则销售单价一定降低了5元
【答案】D
【解析】
设每件降价x元,由“每降低5元,每天可多售出10件”可知每降价1元可多售2件,根据题意可知每天的利润为(20+2x)(40-x),据此一一判断选项即可.
因为每降低5元,每天可多售出10件,所以每降价1元可多售2件,
设每件降价x元,每天的利润为y元,则每天可售(20+2x)件,每件利润为40-x,
所以每天的利润为
将整理成顶点式有,
由顶点式可知当销售单价降低15元时,每天获得利润最大,每天的最大利润为1250元,故A、B正确;
将x=10代入到解析式中解得y=1200,故C正确;
令y=1050,则,解得,即当每天的利润为1050元,则销售单价可能降低了5元,也可能降低了25元,所以D错误;
综上所述,答案选D.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c中的y与x的部分对应值如下表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣3 | 1 | 3 | 1 |
下列结论中:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=3,其中正确的结论有( )
A.①②③B.①②③④⑤C.①③⑤D.①③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,RT△ABC中,,. 动点同时分别从点出发,分别沿着射线和射线的方向均以每秒1个单位的速度运动,连接,以为直径作交射线于点,连接,设运动的时间为.
(1)当点在线段上时,用关于的代数式表示________,________. (直接写出结果)
(2)在整个运动过程中,当为何值时,以点、、为顶点的三角形与以点、、为顶点的三角形相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD交AB于点E,OF⊥AC于点F,
(1)请探索OF和BC的关系并说明理由;
(2)若∠D=30°,BC=1时,求圆中阴影部分的面积.(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点,B两点,与y轴交于点,抛物线的顶点在直线上.
(1)求抛物线的解析式;
(2)点P为第一象限内抛物线上的一个动点,过点P做轴交BC于点Q,求线段PQ长度的最大值,及此时点P的坐标;
(3)点M在x轴上,点N在抛物线的对称轴上,若以点M,N,C,B为顶点的四边形是平行四边形,请直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,BC=8,点O为对角线BD的中点,点E为边AD上一点,连接OE,将△DOE沿OE翻折得到△OEF,若OF⊥AD于点G,则OE=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.
(1)求二次函数y=ax2+bx+c的解析式.
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?求P坐标及最大面积是多少?
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,直接写出M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.
(1)用列表法或画树状图法,求小丽参赛的概率.
(2)你认为这个游戏公平吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com