【题目】如图,在中,通过直尺和圆规作的平分线交于点,以为圆心,为半径的弧交于点,连结,若,,则四边形的面积是________.
【答案】
【解析】
首先根据基本作图可知AB=AF,再结合AO平分∠BAD,利用等腰三角形性质可知AO⊥BF,且BO=OF=3,然后通过平行四边形性质可知AF∥BE,根据平行线性质得出∠DAE=∠AEB,从而得出∠BAE=∠AEB,由此得出AB=BE=AF,据此即可证明四边形ABEF为菱形,最后利用勾股定理求出AO,从而得出AE,最后据此进一步计算即可.
由题意可得:AF=AB,
∵AO平分∠BAD,
∴∠FAE=∠BAE,AO⊥BF,BO=FO=BF=3,
∵四边形ABCD是平行四边形,
∴AF∥BE,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AF=AB=BE,
∴四边形ABEF是菱形,
在Rt△ABO中,AB=5,BO=3,
∴AO=,
∴AE=2AO=8,
∴四边形ABEF的面积=,
故答案为:24.
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,抛物线y=ax2﹣2ax+4(a<0)交x轴于点A、B,与y轴交于点C,AB=6.
(1)如图1,求抛物线的解析式;
(2)如图2,点R为第一象限的抛物线上一点,分别连接RB、RC,设△RBC的面积为s,点R的横坐标为t,求s与t的函数关系式;
(3)在(2)的条件下,如图3,点D在x轴的负半轴上,点F在y轴的正半轴上,点E为OB上一点,点P为第一象限内一点,连接PD、EF,PD交OC于点G,DG=EF,PD⊥EF,连接PE,∠PEF=2∠PDE,连接PB、PC,过点R作RT⊥OB于点T,交PC于点S,若点P在BT的垂直平分线上,OB﹣TS=,求点R的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,长方形的三个顶点的坐标为,,,且轴,点是长方形内一点(不含边界).
(1)求,的取值范围.
(2)若将点向左移动8个单位,再向上移动2个单位到点,若点恰好与点关于轴对称,求,的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.
(1)把折线统计图补充完整;
(2)求出扇形统计图中,公务员部分对应的圆心角的度数;
(3)若从被调查的学生中任意抽取一名,求取出的这名学生最喜欢的职业是“教师”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:,,结果精确到0.1小时)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平直角坐标系中,规定:抛物线的相关直线为.例如:二次函数的相关直线为.
(1)直接写出抛物线的相关直线,并求出抛物线与其相关直线的交点坐标;
(2)如图,抛物线与它的相关直线交于、两点.
①求抛物线的解析式;
②连结,求的面积;
③作,过抛物线上一动点(不与、重合)作直线的平行线交于点,若以点、、、为顶点的四边形是平行四边形,直接写出点的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y=﹣的图象与直线y=kx(k<0)相交于点A、B,以AB为底作等腰三角形,使∠ACB=120°,且点C的位置随着k的不同取值而发生变化,但点C始终在某一函数图象上,则这个图象所对应的函数解析式为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线:与直线分别交于点.直线与交于点.记线段,围成的区域(不含边界)为.横,纵坐标都是整数的点叫做整点.
(1)当时,区域内的整点个数为_____;
(2)若区域内没有整点,则的取值范围是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生,请按要求回答下列问题:
(收集数据)
(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有 ;(只要填写序号即可)
①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各抽取4名学生;④从全年级学生中随机抽取48名男生;
(整理数据)
(2)将抽取的48名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:
①C类和D类部分的圆心角度数分别为 、
②估计全年级A、B类学生大约一共有 名;
成绩(分) | 频数 | 频率 |
A类(80~100) | 0.5 | |
B类(60~79) | 0.25 | |
C类(40~59) | 8 | |
D类(0~39) | 4 |
(3)学校为了解其他学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:
学校 | 平均分(分) | 极差(分) | 方差 | A、B类的频率和 |
第一中学 | 71 | 52 | 432 | 0.75 |
第二中学 | 71 | 80 | 497 | 0.82 |
你认为哪所学校的教学效果较好?结合数据,请给出一个解释来支持你的观点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com