精英家教网 > 初中数学 > 题目详情

【题目】证明命题角的平分线上的点到角的两边的距离相等,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.

已知:如图,OC是∠AOB的角平分线,点 P OC 上, 求证:

(要求:请你补全已知和求证,并写出证明过程.)

【答案】PDOADPEOBEPD=PE.证明见解析.

【解析】

根据题意、结合图形写出已知和求证,证明OPD≌△OPE,根据全等三角形的性质即可得到结论.

已知:如图,OC是∠AOB的角平分线,点POC上,PDOADPEOBE,求证:PD=PE

证明:∵PDOAPEOB

∴∠PDO=PEO=90°

OC是∠AOB的角平分线,

∴∠AOC=∠BOC

PDOPEO中,

∴△PDO≌△PEOAAS),

PD=PE

故答案为:PDOADPEOBEPD=PE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知反比例函数,(k为常数,k≠1).

(1)若点A(1,2)在这个函数的图象上,求k的值;

(2)若在这个函数图象的每一分支上,yx的增大而增大,求k的取值范围;

(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1)(﹣3)﹣(﹣2+(﹣4);

2)﹣10+14+168;

3(4)×(5)90÷(15)

4)﹣23÷×(﹣2

5)(+×(﹣36);

6)﹣14×[2﹣(﹣32]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,连接BD,点OBD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数分别交y轴、x 轴于A、B两点,抛物线过A、B两点。(1)求这个抛物线的解析式(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N。求当t 取何值时,MN有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(注:结果保留π )

(1)把圆片沿数轴向右滚动半周,点B到达数轴上点C的位置,点C表示的数是   (填“无理”或“有理”),这个数是   

(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是   

(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1+3,﹣4,﹣3

   次滚动后,A点距离原点最近,第   次滚动后,A点距离原点最远.

当圆片结束运动时,A点运动的路程共有   ,此时点A所表示的数是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)阅读理解:

如图①,在ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将ACD绕着点D逆时针旋转180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三边的关系即可判断.

中线AD的取值范围是

(2)问题解决:

如图②,在ABC中,D是BC边上的中点,DEDF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CFEF;

(3)问题拓展:

如图③,在四边形ABCD中,B+D=180°,CB=CD,BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图,在平面直角坐标系上有个点P(1,0),点P1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,依此规律跳动下去,点P2019次跳动至点P2019的坐标是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

1)在数轴上表示下列各数:0–25–2+5

2)将上列各数用“<”连接起来:___________ _____________________

查看答案和解析>>

同步练习册答案