【题目】如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)
(1)求DE与水平桌面(AB所在直线)所成的角;
(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).
【答案】(1)15°;(2)45.7cm
【解析】
(1)过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,进而可得出∠EDF的值;
(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.
(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,
由题意可得:四边形DNMF是矩形,则∠NDF=90°.
∵∠A=60°,∠AND=90°,
∴∠ADN=30°,
∴∠EDF=135°﹣90°﹣30°=15°,
即DE与水平桌面(AB所在直线)所成的角为15°;
(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,
∴∠ABC=30°,则ACAB=8.
∵灯杆CD长为40,
∴AD=48,
∴DN=ADcos30°=48×0.87=41.76,
则FM=41.76.
∵灯管DE长为15,
∴sin15°0.26,
解得:EF=3.9,
故台灯的高为:3.9+41.76≈45.7(cm).
科目:初中数学 来源: 题型:
【题目】综合与实践
问题情境:如图1,在数学活动课上,老师让同学们画了等腰Rt△ABC和等腰Rt△ADE,并连接CE,BD.
操作发现:(1)当等腰Rt△ADE绕点A旋转,如图2,勤奋小组发现了:
①线段CE与线段BD之间的数量关系是 .
②直线CE与直线BD之间的位置关系是 .
类比思考:(2)智慧小组在此基础上进行了深入思考,如图3,若△ABC与△ADE都为直角三角形,∠BAC=∠DAE=90°,且AC=2AB,AE=2AD,请你写出CE与BD的数量关系和位置关系,并加以证明.
拓展应用:(3)创新小组在(2)的基础上,又作了进一步拓展研究,当点E在直线AB上方时,若DE∥AB,且AB=,AD=1,其他条件不变,试求出线段CE的长.(直接写出结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣kx+m与双曲线y=(x>0)交于A、B两点,点A的横坐标为1,点B的纵坐标为2,点P是y轴上一动点,当△PAB的周长最小时,点P的坐标是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣1,﹣2和2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=﹣x上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,、
、
三点的坐标分别为
,
,
,点
为线段
上的一个动点,连接
,过点
作
交
轴于点
,当点
从
运动到
时,点
随之运动,设点
的坐标为
,则
的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示的是宝鸡市文化景观标志“天下第一灯”,它由国际不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分
层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量“天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部
他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点
并在点
处安装了测量器
在点
处测得该灯的顶点P的仰角为
;再在
的延长线上确定一点
使
米,在
点处测得该灯的顶点
的仰角为
.若测量过程中测量器的高度始终为
米,求“天下第一灯”的高度.
,最后结果取整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次“汉字听写”大赛赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:
90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,97,100,73,76,80,77,81,86,89,82,85,71,68,74,98,90,97,100,84,87,73,65,92,96,60.
对上述成绩进行了整理,得到下列不完整的统计图表:
成绩 | 频数 | 频率 |
6 | ||
8 | ||
a | b | |
c | d |
请根据所给信息,解答下列问题:
______,
______,
______,
______;
请补全频数分布直方图;
若成绩在90分以上
包括90分
的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线(m,n 为常数).
(1)若抛物线的的对称轴为直线 x=1,且经过点(0,-1),求 m,n 的值;
(2)若抛物线上始终存在不重合的两点关于原点对称,求 n 的取值范围;
(3)在(1)的条件下,存在正实数 a,b( a<b),当 a≤x≤b 时,恰好有,请直接写出 a,b 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com