【题目】如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠A=80°,点P为⊙O上任意一点(不与E、F重合),则∠EPF=______.
【答案】50°或130°
【解析】
有两种情况:①当P在弧EDF上时,连接OE、OF,求出∠EOF,根据圆周角定理求出即可;②当P在弧EMF上时,∠EPF=∠EMF,根据圆内接四边形的性质得到∠EMF+∠ENF=180°,代入求出即可.
有两种情况:
①当P在弧EDF上时,∠EPF=∠ENF,连接OE、OF,
∵圆O是△ABC的内切圆,∴OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,
∵∠A=80°,∴∠EOF=360°∠AEO∠AFO∠A=100°,∴∠ENF=∠EPF=∠EOF=50°,
②当P在弧EMF上时,∠EPF=∠EMF,∠FPE=∠FME=180°50°=130°.
故答案为:50°或130°.
科目:初中数学 来源: 题型:
【题目】(9分)已知:ABCD的两边AB,AD的长是关于x的方程的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么ABCD的周长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2-(2m+3)x+m2+2=0.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程的两个根分别为x1、x2,且满足x12+x22=31+x1x2,求实数m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2经过点A(2,1).
(1) 求a的值;
(2) 如图1,点M为x轴负半轴上一点,线段AM交抛物线于N.若△OMN为等腰三角形,求点N的坐标;
(3) 如图2,直线y=kx-2k+3交抛物线于B、C两点,过点C作CP⊥x轴,交直线AB于点P,请说明点P一定在某条确定的直线上运动,求出这条直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为庆祝新中国成立70周年,并体现绿色节能理念,我市某工厂降低了某种工艺品的成本,两个月内从每件产品成本50元,降低到了每件32元,
(1)请问工厂平均每月降低率为多少?
(2)该工厂将产品投放市场进行实销,经过调查,得到如下数据:
销售单价(元/件) | …… | 40 | 50 | 60 | 70 | …… |
每天销售量(件) | …… | 400 | 300 | 200 | 100 | …… |
把上表中、的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想与的函数关系,并求出函数关系式.
(3)当销售单价定为多少时,工艺厂试销该工艺品每天活得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AC⊥AB,,AC=2,点D是以AB为直径的半圆O 上一动点,DE⊥CD交直线AB于点E,设.
(1)当时,求弧BD的长;
(2)当时,求线段BE的长;
(3)若要使点E在线段BA的延长线上,则的取值范围是 .(直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com