精英家教网 > 初中数学 > 题目详情

【题目】若等腰三角形的两边长为,则它腰上的高长度为______

【答案】

【解析】

先由三角形三边的关系判断出等腰三角形的三边长分别为884,再分别作出底边和腰上的高线,由勾股定理求出底边上的高,再由三角形等积式及可求解.

情况1:当等腰三角形的腰长为4时,则这个等腰三角形的三边长分别为448

4+4=8,不满足三角形的三边关系,

∴此情况不存在等腰三角形;

情况2:当等腰三角形的腰长为8时,则这个等腰三角形的三边长分别为488

4+8>88-4<8,符合三角形的三边关系,

∴此情况存在等腰三角形,

综上所述,这个等腰三角形的腰长为8,底边长为4.

如图,

AB=AC=8BC=4,过点AADBC于点D

AB=AC=8AD⊥ BCBC=8

BD=BC=2(等腰三角形的三线合一)

由勾股定理得:AD=

过点CCEAB于点E

,得

即腰上的高为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数学活动课上,同学们探究了角平分线的作法.下面给出三个同学的作法:

小红的作法

如图,∠AOB是一个任意角,在边OAOB上分别取OMON,再过点OMN的垂线,垂足为P,则射线OP便是∠AOB的平分线.

小明的作法

如图,∠AOB是一个任意角,在边OAOB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与MN重合,过角尺顶点C的射线OC便是∠AOB的平分线.

小刚的作法

如图,∠AOB是一个任意角,在边OAOB上分别取OMON,再分别过点MNOAOB的垂线,交点为P,则射线OP便是∠AOB的平分线.

请根据以上情境,解决下列问题

(1)小红的作法依据是

(2)为说明小明作法是正确的,请帮助他完成证明过程.

证明:∵OMONOCOC

∴△OMC≌△ONC( )(填推理的依据)

(3)小刚的作法正确吗?请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点My轴上的抛物线与直线y=x+1相交于AB两点,且点Ax轴上,点B的横坐标为2,连结AMBM

1)求抛物线的函数关系式;

2)判断ABM的形状,并说明理由;

3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m2m),当m满足什么条件时,平移后的抛物线总有不动点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:二次函数y=ax2bxc的图象所示,下列结论中:①abc>0;②2ab=0;③当m≠1时,abam2bm;④abc>0;⑤若ax12bx1=ax22bx2,且x1x2,则x1x2=2,正确的个数为

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读理解下面的例题,再按要求解答下列问题:

例题:解一元二次不等式.

解∵,∴可化为.

由有理数的乘法法则:两数相乘,同号得正,得:①

解不等式组①,得,解不等式组②,得

的解集为.

即一元二次不等式的解集为.

1)一元二次不等式的解集为____________

2)试解一元二次不等式

3)试解不等式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BEAD交于点F

⑴求证:ΔABFΔEDF

⑵若将折叠的图形恢复原状,点FBC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线C:y=x2经过变化可得到抛物线C1:y1=a1x(xb1),C1与x轴的正半轴交与点A1,且其对称轴分别交抛物线C,C1于点B1,D1,此时四边形OB1A1D1恰为正方形;按上述类似方法,如图2,抛物线C1:y1=a1x(xb1)经过变换可得到抛物线C2:y2=a2x(xb2),C2与x轴的正半轴交与点A2,且其对称轴分别交抛物线C1,C2于点B2,D2,此时四边形OB2A2D2也恰为正方形;按上述类似方法,如图3,可得到抛物线C3:y3=a3x(xb3)与正方形OB3A3D3.请探究以下问题:

(1)填空:a1= ,b1=

(2)求出C2与C3的解析式;

(3)按上述类似方法,可得到抛物线Cn:yn=anx(xbn)与正方形OBnAnDn(n1).

请用含n的代数式直接表示出Cn的解析式;

当x取任意不为0的实数时,试比较y2015与y2016的函数值的大小并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由正比例函数沿轴的正方向平移4个单位而成的一次函数

的图像与反比例函数)在第一象限的图像交于A(1,n)和B两点.

(1)求一次函数和反比例函数的解析式;

(2)求△ABO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:

请结合图中信息解答下列问题:

(1)求出随机抽取调查的学生人数;

(2)补全分组后学生学习兴趣的条形统计图;

(3)分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.

查看答案和解析>>

同步练习册答案