精英家教网 > 初中数学 > 题目详情
18.如图,在△ABC中,AB=BC,∠B=30°,DE垂直平分BC,则∠ACD的度数为(  )
A.30°B.45°C.55°D.75°

分析 根据等腰三角形的性质得到∠A=∠ACB=75°,根据线段垂直平分线的性质得到BD=CD,求得∠DCE=∠B=30°,即可得到结论.

解答 解:∵AB=BC,∠B=30°,
∴∠A=∠ACB=75°,
∵DE垂直平分BC,
∴BD=CD,
∴∠DCE=∠B=30°,
∴∠ACD=∠ACB=∠DCB=45°,
故选B.

点评 本题考查了三角形的内角和定理,等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.观察下列等式:$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}-\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$
将以上三个等式两边分别相加得:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$
(1)按照一定规律排列式子:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+…,其中第n项(n为正整数)的形式为$\frac{1}{n(n+1)}$,按照材料中的写法,该项可表示为$\frac{1}{n}$-$\frac{1}{n+1}$.
(2)直接写出下式:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2009×2010}$的计算结果为$\frac{2009}{2010}$.
(3)探究并计算:$\frac{1}{2×4}$+$\frac{1}{4×6}$+…+$\frac{1}{2n×2(n+1)}$(其中n为正整数).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.2015年12月,Facebook(脸书)创始人扎克伯格在自己的主页上通过一封真挚的书信告诉世界,他为了迎接女儿的降生,扎克伯格在信中宣布将会把他夫妻两人所持有Facebook股份的99%捐赠给慈善机构,总价值约为45000000000美元,把45000000000用科学记数法表示为4.5×1010

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列实数中,是负数的是(  )
A.-$\sqrt{2}$B.2.5C.0D.$\frac{5}{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在梯形ABCD中AB∥CD,∠BCD=90°,AB=1,BC=2,tan∠ADC=2.
(1)求证:BC=CD;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△EFC的形状,并证明;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.函数$y=\frac{{\sqrt{2-x}}}{x-3}$的自变量x的取值范围是(  )
A.x≤2B.x≥2且x≠3C.x≥2D.x≤2且x≠3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.给出4个判断:
①所有的等腰三角形都相似,
②所有的等边三角形都相似,
③所有的直角三角形都相似,
④所有的等腰直角三角形都相似.
其中判断正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,△ABC是钝角三角形,DE是△ABC的中位线,现有△FCB≌△ABC,恰有AB⊥FC,垂足为O,连接AF,若DE=1.5,AF=7,则BC与AF之间的距离为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算题:
(1)$-{1^{2013}}+{({\frac{1}{2}})^{-2}}-{({-2})^0}$
(2)(-2x32•(-x2)÷[(-x)2]3
(3)($\frac{4}{5}$)2008×($\frac{5}{4}$)2009

查看答案和解析>>

同步练习册答案