分析 (1)此题要证明DC=BC不能用全等三角形的性质,利用tan∠ADC=2求出BC然后再判定相等;
(2)容易证明△DEC≌△BFC,得CE=CF,∠ECD=∠FCB,这样容易证明△ECF是等腰直角三角形;
(3)由∠BEC=135°得∠BEF=90°,这样求sin∠BFE,然后利用已知条件就可以求出它的值了.
解答 解:(1)如图,过A作DC的垂线AM交DC于M,则AM=BC=2.![]()
又tan∠ADC=2,
∴DM=$\frac{2}{2}$=1,
即DC=BC;
(2)等腰直角三角形.
证明:在△DEC和△BFC中,
$\left\{\begin{array}{l}{DE=BF}\\{∠EDC=∠FBC}\\{DC=BC}\end{array}\right.$,
∴△DEC≌△BFC,
∴CE=CF,∠ECD=∠FCB,
∴∠ECF=∠FCB+∠BCE=∠ECD+∠BCE=∠BCD=90°,
即△ECF是等腰直角三角形;
(3)设BE=k,则CE=CF=2k,
∴EF=2$\sqrt{2}$k,
∵∠BEC=135°,又∠CEF=45°,
∴∠BEF=90°,
所以BF=$\sqrt{{k}^{2}+(2\sqrt{2}k)^{2}}$=3k,
所以sin∠BFE=$\frac{k}{3k}=\frac{1}{3}$.
点评 本题考查三角函数、全等三角形的应用、等腰三角形的判定等知识点的综合应用及推理能力、运算能力,解决本题的关键是作出辅助线.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | … |
| y | … | 4 | 3 | 2 | 1 | 0 | 1 | 2 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a-(2a-b)=-a-b | B. | (a2-2ab+a)÷a=a-2b | ||
| C. | ${({-\frac{1}{3}{a^2}})^3}=-\frac{1}{9}{a^6}$ | D. | (a+2b)(a-b)=a2+ab-2b2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com