精英家教网 > 初中数学 > 题目详情

【题目】(8分)如图,在ABCD中,BCD=120°,分别延长DC、BC到点E,F,使得BCE和CDF都是正三角形.

(1)求证:AE=AF;

(2)求EAF的度数.

【答案】(1)证明见试题解析;(2)60°.

【解析】

试题(1)根据平行四边形的性质得BAD=BCD=120°,ABC=ADC,AB=CD,BC=AD,根据等边三角形的性质得BE=BC,DF=CD,EBC=CDF=60°,即可证出ABE=FDA,AB=DF,BE=AD,SAS证明ABE≌△FDA,得出对应边相等即可;

(2)根据全等三角形的性质得AEB=FAD,求出AEB+BAE=60°,得出FAD+BAE=60°,即可得出EAF的度数.

试题解析:(1)四边形ABCD是平行四边形,∴∠BAD=BCD=120°,ABC=ADC,AB=CD,BC=AD,∵△BCE和CDF都是正三角形,BE=BC,DF=CD,EBC=CDF=60°,∴∠ABE=FDA,AB=DF,BE=AD,在ABE和FDA中,AB=DF,ABE=JIAO FDA,BE=AD∴△ABE≌△FDA(SAS),AE=AF;

(2)∵△ABE≌△FDA,∴∠AEB=FAD,∵∠ABE=60°+60°=120°,∴∠AEB+BAE=60°,∴∠FAD+BAE=60°,∴∠EAF=120°﹣60°=60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点0,AOD=20°,DOF:FOB=1:7,射线OE平分∠BOF.

(1)求∠EOB的度数;

(2)射线OE与直线CD有什么位置关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某网店的“翻牌抽奖”活动,如图,共有4张牌,分别对应5元,10元,15元,20元的现金优惠券,小明只能看到牌的背面.
(1)如果随机翻一张牌,那么抽中20元现金优惠券的概率是
(2)如果随机翻两张牌,且第一次翻的牌不参与下次翻牌,则所获现金优惠券的总值不低于30元的概率是多少?请画树状图或列表格说明问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)(﹣2x3y)2(﹣2xy)+(﹣2x3y)3÷2x2

(2)20202﹣2019×2021

(3)(﹣2a+b+1)(2a+b﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,求证:∠ACD=∠B;

(2)如图,在Rt△ABC中,∠C=90°,D、E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状?并说明理由?

(3)如图,在Rt△ABCRt△DBE中,∠C=90°,∠E=90°,点C,B,E在同一直线上,若AB⊥BD,AB=BD,则CEAC,DE有什么等量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下列数量关系列不等式:

1a1的和是正数

2ab的差是负数

3ab的两数和的平方不大于9

4a倍与b的和的平方是非负数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.
(1)求证:AC平分∠BAD;
(2)探究线段PB,AB之间的数量关系,并说明理由;
(3)若AD=3,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为 km.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3若改变(2中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明

查看答案和解析>>

同步练习册答案