【题目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
【答案】(1)证明见解析(2)4
【解析】试题分析:(1)连接OE,证明∠OEA=90°即可;
(2)连接OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,利用垂径定理和勾股定理计算出OH的长,进而求出CE的长.
试题解析:(1)连接OE.
∵OE=OB,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠OBE=∠EBC,
∴∠EBC=∠OEB,
∴OE∥BC,
∴∠OEA=∠C,
∵∠ACB=90°,
∴∠OEA=90°
∴AC是⊙O的切线;
(2)连接OE、OF,过点O作OH⊥BF交BF于H,
由题意可知四边形OECH为矩形,
∴OH=CE,
∵BF=6,
∴BH=3,
在Rt△BHO中,OB=5,
∴OH=4,
∴CE=4.
科目:初中数学 来源: 题型:
【题目】在高速公路上的一个测速点,仪器记录下过往车辆的行驶速度(单位:千米/时),分析人员随机选取了10个速度数据如下:98,99,102,105,97,86,105,110,95,91.求这组数据的平均数、中位数和众数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AD平分∠CAB交BC于点D,CD=1,延长AC到E,使AE=AB,连接DE,BE.
(1)求BD的长;
(2)求证:DA=DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的有( )
(1)、的平方根是±5;(2)、五边形的内角和是540°;(3)、抛物线y=x2+2x+4与x轴无交点;(4)、等腰三角形两边长为6cm和4cm,则它的周长是16cm.
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数y=kx的图象与反比例函数y=的图象相交于A、B两点,且A点的横坐标为2.
(1)求A、B两点的坐标;
(2)在x轴上取关于原点对称的P、Q两点,(P点在Q点的右边),试问四边形AQBP一定是一个什么形状的四边形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某一中学以1班学生的地理测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成两幅统计图,结合图中信息解答下列问题:
(1)D级学生的人数占全班人数的百分比为________;
(2)扇形统计图中C级所在扇形圆心角度数为__________;
(3)若该校共有1500人,则估计该校地理成绩得A级的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=x+3分别交x轴、y轴于A,C两点,抛物线y=ax2+bx+c(a≠0),经过A,C两点,与x轴交于点B(1,0).
(1)求抛物线的解析式;
(2)点D为直线AC上一点,点E为抛物线上一点,且D,E两点的横坐标都为2,点F为x轴上的点,若四边形ADEF是平行四边形,请直接写出点F的坐标;
(3)若点P是线段AC上的一个动点,过点P作x轴的垂线,交抛物线于点Q,连接AQ,CQ,求△ACQ的面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其中AB=BC.如果,那么该数轴的原点O的位置应该在( )
A.点A的左边
B.点A与点B之间
C.点B与点C之间(靠近点B)
D.点C的右边
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将7张相同的长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好可以分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.
(1)当a=9,b=2,AD=30时,S1-S2=______.
(2)当AD=30时,用含a,b的式子表示S1-S2.
(3)若AB长度不变,AD变长,将这7张小长方形纸片按照同样的方式放在新的长方形ABCD内,而且S1-S2的值总保持不变,则a,b满足的关系是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com