精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD中,EAD的中点,已知DEF的面积为1,则平行四边形ABCD的面积为_______

【答案】12

【解析】

由于四边形ABCD是平行四边形,那么ADBCAD=BC,根据平行线分线段成比例定理的推论可得DEF∽△BCF,再根据EAD中点,易求出相似比,从而可求BCF的面积,再利用BCFDEF是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求DCF的面积,进而可求ABCD的面积.

∵四边形ABCD是平行四边形,

ADBCAD=BC

∴△DEF∽△BCF

SDEFSBCF=2

又∵EAD中点,

DE=AD=BC

DEBC=DFBF=12

SDEFSBCF=14

SBCF=4

又∵DFBF=12

SDCF=2

SABCD=2SDCF+SBCF=12

故答案为12

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】爸爸想送小明一个书包和一辆自行车作为新年礼物,在甲、乙两商场都发现同款的自行车单价相同,书包单价也相同,自行车和书包单价之和为452元,且自行车的单价比书包的单价4倍少8元.

(1)求自行车和书包单价各为多少元;

(2)新年来临赶上商家促销,乙商场所有商品打八五折(即8.5折)销售,甲全场购物毎满100元返购物券30元(即不足100元不返券,满100元送30元购物券,满200元送60元购物券),并可当场用于购物,购物券全场通用.但爸爸只带了400元钱,如果他只在同一家商场购买看中的两样物品,在哪一家买更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019422日是第50个世界地球日,某校在八年级5个班中,每班各选拔10名学生参加环保知识竞赛并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:

1)求本次竞赛获奖的总人数,并补全条形统计图;

2)求扇形统计图中二等奖所对应扇形的圆心角度数;

3)如果该校八年级有800人,请你估计获奖的同学共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若数a使关于x的不等式组至少有3个整数解,且使关于y的分式方程2有非负整数解,则满足条件的所有整数a的和是(  )

A. 14B. 15C. 23D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:345;三个连续的偶数中的勾股数6810;事实上,勾股数的正整数倍仍然是勾股数.

(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a2n+1b2n2+2nc2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的abc的数是一组勾股数.

(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a(m2n2)bmnc(m2+n2)(mn为正整数,mn时,abc构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n5,求该直角三角形另两边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某旅行社推出一条成本价为500元/人的省内旅游线路.游客人数(人/月)与旅游报价(元/人)之间的关系为,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.

(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;

(2)求经营这条旅游线路每月所需要的最低成本;

(3)当这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,AC=3,AB=4,D为斜边BC的中点,E为AB上一个动点,将△ABC沿直线DE折叠,A,C的对应点分别为交BC于点F,若△BEF为直角三角形,则BE的长度为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有一次函数ymx+n和二次函数ymx2+nx+1,其中m0

1)若二次函数ymx2+nx+1经过点(20),(31),试分别求出两个函数的解析式.

2)若一次函数ymx+n经过点(20),且图象经过第一、三象限.二次函数ymx2+nx+1经过点(ay1)和(a+1y2),且y1y2,请求出a的取值范围.

3)若二次函数ymx2+nx+1的顶点坐标为Ahk)(h0),同时二次函数yx2+x+1也经过A点,已知﹣1h1,请求出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)问题发现:如图1,在RtABC中,ABACDBC边上一点(不与点BC重合)将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BDCE的数量关系是   ,位置关系是   

2)探究证明:如图2,在RtABCRtADE中,ABACADAE,将△ADE绕点A旋转,使点D落在BC的延长线上时,连接EC,写出此时线段ADBDCD之间的等量关系,并证明;

3)拓展延仲:如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC45°.若BF13CF5,请直接写出AF的长.

查看答案和解析>>

同步练习册答案