【题目】公园门票价格规定如下表:
购票张数 | 1~50张 | 51~100张 | 100张以上 |
每张票的价格 | 15元 | 13元 | 11元 |
某校七年级(1)(2)两个班共102人去游园,其中(1)班超过40人,不足50人,经估算,如果两个班都以班为单位购票,则一共应付1422元.问:
(1)两个班各有多少学生?
(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?
(2)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?
【答案】(1)七年级(1)班有48名学生,七年级(2)班有54名学生;(2)如果两班联合起来,作为一个团体购票,可省300元;(3)如果七年级(1)班单独组织去游园,组织者直接购买51张门票最省钱.
【解析】
(1)设(1)班的学生人数为x人,则(2)班的学生人数为人,根据(1)班的人数范围确定(2)班的学生人数范围,从而确定每班购票的单价,再根据一共付的钱数建立等式方程求解即可;
(2)两班联合购票时,总人数超过100,因此每张票的价格为11元,计算出总共付的钱数,再与分开购票时所付的钱作差即可得出结论;
(3)分别求出购买48张门票和51张门票的总钱数,比较后即可得出结论.
(1)设七年级(1)班的学生人数为x人,则七年级(2)班的学生人数为人
由题意可得:
解得:
则
答:七年级(1)班有48名学生,七年级(2)班有54名学生;
(2)两班联合起来购票 应付钱数为:(元)
则可省的钱数为:(元)
答:如果两班联合起来,作为一个团体购票,可省300元;
(3)(元), (元)
因为
所以如果七年级(1)班单独组织去游园,组织者直接购买51张门票最省钱.
科目:初中数学 来源: 题型:
【题目】某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
品名 | 猕猴桃 | 芒果 |
批发价元千克 | 20 | 40 |
零售价元千克 | 26 | 50 |
他购进的猕猴桃和芒果各多少千克?
如果猕猴桃和芒果全部卖完,他能赚多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.
(1)这次抽样调查共抽取了 名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为 °;
(2)将条形统计图补充完整;
(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MAN=30°,点O为边AN上一点,以O为圆心,4为半径
作⊙O交AN于D、E两点.
⑴ 当⊙O与AM相切时,求AD的长;
⑵ 如果AD=2,那么AM与⊙O又会有怎样的位置关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在 分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调査了部分学生,调查结果分为五种:A非常了解,B比较了解,C基本了解,D不太了解,E完全不知.实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请根据以上信息,解答下列问题:
(1)本次共调查了 名学生,扇形统计图中D所对应扇形的圆心角为 度;
(2)把这幅条形统计图补充完整(画图后请标注相应的数据);
(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有 名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段AB=60cm.
(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点 向A点以4厘米/秒运动,问经过几秒后P、Q相遇?
(2)在(1)的条件下,几秒钟后,P、Q相距12cm?
(3)如图2,AO=PO=10厘米,∠POB=40°,点P绕着点O以10度/秒的速度顺时针 旋转一周停止,同时点Q沿线段BA自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com