【题目】在同一平面内,有相互平行的三条直线a,b,c,且a,b之间的距离为1,b,c之间的距离是2,若等腰Rt△ABC的三个顶点恰好各在这三条平行直线上,如图所示,则△ABC的面积是_____.
【答案】5.
【解析】
过点B作BE⊥a于点E,过点C作CF⊥a于点F,由余角的性质可得∠CAF=∠ABE,由“AAS”可证△ABE≌△CAF,可得AE=CF=1,由勾股定理可求AB的长即可解决问题.
解:如图,过点B作BE⊥a于点E,过点C作CF⊥a于点F,
∵a,b之间的距离是1,b,c之间的距离是2,
∴BE=3,CF=1,
∵∠BAC=90°,BE⊥EF,
∴∠BAE+∠CAF=90°,∠BAE+∠ABE=90°,
∴∠CAF=∠ABE,且AB=AC,∠AEB=∠AFC=90°,
∴△ABE≌△CAF(AAS),
∴AE=CF=1,
∴在Rt△ABE中,AB==,
∵∠BAC=90°,AB=AC=,
∴S△ABC=ABAC=5.
故答案为:5.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上,A(﹣3,0),B(1,b),则正方形ABCD的面积为( )
A.34B.25C.20D.16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若PD=,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)在等腰三角形ABC,∠A=130°,求∠B的度数
(2)在等腰三角形ABC中,∠A=40°,求∠B的度数.
(3)根据(1)(2)问后发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围,并用含x的式子表示∠B的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数的图象过点A(3,2).
(1)试求该反比例函数的表达式;
(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,A(0,a)、B(b+1,0),且a、b满足a2-12a++36=0,
(1)求A、B两点的坐标;
(2)点C在线段BO上(C不与端点B、O重合),点D在线段AO上(D不与端点A、O重合),连CD,过D作CD的垂线交AB于P,若BC=2DO,设C点横坐标为t,求P点横坐标(用含t的代数式表示).
(3)在(2)的条件下,连BD, 点N是BO中点,NM⊥BO,交BD于点M,连AM,若BD=PB,求AM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=15,点D是边BC上一动点(不与B、C重合),∠ADE=∠B=α,DE交AC于点E,且tanα=有以下的结论:① △ADE∽△ACD;② 当CD=9时,△ACD与△DBE全等;③ △BDE为直角三角形时,BD为12或;④ 0<BE≤,其中正确的结论是___________(填入正确结论的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com