精英家教网 > 初中数学 > 题目详情
16.阅读下列材料:
我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形,菱形都是和谐四边形.
结合阅读材料,完成下列问题:
如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD的和谐线,且AB=BC,请画出图形并求出∠ABC的度数.

分析 首先根据题意画出图形,然后由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图1,图2,图3三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠ABC的度数.

解答 解:∵AC是四边形ABCD的和谐线,
∴△ACD是等腰三角形,
在等腰Rt△ABD中,
∵AB=AD,
∴AB=AD=BC,
如图1,当AD=AC时,
∴AB=AC=BC,∠ACD=∠ADC
∴△ABC是正三角形,
∴∠ABC=60°.
如图2,当AD=CD时,
∴AB=AD=BC=CD.
∵∠BAD=90°,
∴四边形ABCD是正方形,
∴∠ABC=90°;
如图3,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,
∵AC=CD.CE⊥AD,
∴AE=$\frac{1}{2}$AD,∠ACE=∠DCE.
∵∠BAD=∠AEF=∠BFE=90°,
∴四边形ABFE是矩形.
∴BF=AE.
∵AB=AD=BC,
∴BF=$\frac{1}{2}$BC,
∴∠BCF=30°.
∵AB=BC,
∴∠ACB=∠BAC.
∵AB∥CE,
∴∠BAC=∠ACE,
∴∠ACB=∠BAC=$\frac{1}{2}$∠BCF=15°,
∴∠ABC=150°,
综上:∠ABC的度数可能是:60°90°150°.

点评 此题考查了等腰直角三角形的性质,等腰三角形的性质、矩形的性质、正方形的性质,菱形的性质,此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.(3x+1)(3x-1)(9x2+1)=81x4-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1)已知a-b=1,ab=-2,求(a+1)(b-1)的值;
(2)已知(a+b)2=11,(a-b)2=7,求ab;
(3)已知x-y=2,y-z=2,x+z=4,求x2-z2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若关于x的一元二次方程(k-1)x2-x+k2=0的一个根是1,则k的值为-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速度继续向甲地行驶,到达甲地后停止行驶;快车达到乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图.请结合图象信息解答下列问题:
(1)求慢车的行驶速度和a的值;
(2)求快车与慢车第一次相遇时,距离甲地的路程是多少千米?
(3)求两车出发后几小时相距的路程为160千米?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图所示,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于(  )
A.75°B.70°C.60°D.55°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.一圆锥底面圆的周长为5cm,母线长为4cm,则其侧面积为10cm2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知三角形的边长分别为4、a、8,则a的取值范围是4<a<12;如果这个三角形中有两条边相等,那么它的周长为20.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,AB∥DE∥GF,∠1:∠D:∠B=2:3:4,求∠1的度数?

查看答案和解析>>

同步练习册答案