【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2-4ac>0;③a+b+c>0;④a-b+c>0.其中正确的结论有( )
A. 1个
B. 2个
C. 3个
D. 4个
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,∠C=60°,AD是⊙O的直径,Q是AD延长线上的一点,且BQ=AB.
(1)求证:BQ是⊙O的切线;
(2)若AQ=6.
①求⊙O的半径;
②P是劣弧AB上的一个动点,过点P作EF∥AB,EF分别交CA、CB的延长线于E、F两点,连接OP,当OP和AB之间是什么位置关系时,线段EF取得最大值?判断并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题提出:
如图,图①是一张由三个边长为 1 的小正方形组成的“L”形纸片,图②是一张 a× b 的方格纸(a× b的方格纸指边长分别为 a,b 的矩形,被分成 a× b个边长为 1 的小正方形,其中 a≥2 , b≥2,且 a,b 为正整数) .把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?
问题探究:
为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.
探究一:
把图①放置在 2× 2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图③,对于 2×2的方格纸,要用图①盖住其中的三个小正方形,显然有 4 种不同的放置方法.
探究二:
把图①放置在 3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图④,在 3×2的方格纸中,共可以找到 2 个位置不同的 2 ×2方格,依据探究一的结论可知,把图①放置在 3×2 的方格纸中,使它恰好盖住其中的三个小正方形,共有 2 ×4=8种
不同的放置方法.
探究三:
把图①放置在 a ×2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图⑤, 在 a ×2 的方格纸中,共可以找到______个位置不同的 2×2方格,依据探究一的结论可知,把图①放置在 a× 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有______种不同的放置方法.
探究四:
把图①放置在 a ×3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图⑥,在 a ×3 的方格纸中,共可以找到______个位置不同的 2×2方格,依据探究一的结论可知,把图①放置在 a ×3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_____种不同的放置方法.
……
问题解决:
把图①放置在 a ×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)
问题拓展:
如图,图⑦是一个由 4 个棱长为 1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为 a,b ,c (a≥2 , b≥2 , c≥2 ,且 a,b,c 是正整数)的长方体,被分成了a×b×c个棱长为 1 的小立方体.在图⑧的不同位置共可以找到______个图⑦这样的几何体.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣x+c与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,直线y=﹣x+b与抛物线相交于点A,D,与y轴交于点E,已知OB=,OC=2.
(1)求a,b,c的值;
(2)点P是抛物线上的一个动点,若直线PE∥AC,连接PA、PE,求tan∠APE的值;
(3)动点Q从点C出发,沿着y轴的负方向运动,是否存在某一位置,使得∠OAQ+∠OAD=30°?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥BC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.
(1)如图1,求证:∠ANE=∠DCE;
(2)如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;
(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形ABCD中,∠A=60°,AB=8cm,如图①,点E,H从点A开始向B,D运动,同时点F,G从点C向B,D运动,运动速度都为1cm/秒,运动时间为t秒(0≤t<8).
(1)当运动时间t=4时,求证:四边形EFGH为矩形;
(2)当t等于多少秒时,四边形EFGH面积是菱形ABCD面积的;
(3)如图②,连接HF,BG,当t等于多少秒时,HF⊥BG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=x+6与x、y轴分别交于点A,点B,双曲线的解析式为
(1)求出线段AB的长
(2)在双曲线第四象限的分支上存在一点C,使得CB⊥AB,且CB=AB,求k的值;
(3)在(1)(2)的条件下,连接AC,点D为BC的中点,过D作AC的垂线BF,交AC于B,交直线AB于F,连AD,若点P为射线AD上的一动点,连接PC、PF,当点P在射线AD上运动时,PF-PC的值是否发生改变?若改变,请求出其范围;若不变,请证明并求出定值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠A=60°,AD=4,点F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A'E'F',设点P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为( )
A. 7B. 6C. 8D. 8﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.
(1)求证:△ABE∽△DAF;
(2)当ACFC=AEEC时,求证:AD=BE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com