【题目】某商场经营某种品牌的玩具,进价是元,根据市场调查:在一段时间内,销售单价是元时,销售量是件,而销售单价每涨元,就会少售出件玩具.
(1)不妨设该种品牌玩具的销售单价为元,请你分别用的代数式来表示销售量件和销售该品牌玩具获得利润元,并把结果填写在表格中:
(2)在问条件下,若商场获得了元销售利润,求该玩具销售单价应定为多少元.
(3)在问条件下,求商场销售该品牌玩具获得的最大利润是多少?此时定价多少元?
销售单价(元) | |
销售量(件) | |
销售玩具获得利润(元) |
|
【答案】(1)-10x+800,-10x2+1000x-16000;(2)40元或60元;(3)当定价50元时,商场销售该品牌玩具获得的利润最大,为9000元.
【解析】
(1)根据“销售量=原销量-因价格上涨而减少的销售量”、“总利润=单件利润×销售量”可得函数解析式;
(2)求出w=8000时x的值即可得;
(3)将w=-10x2+1000x-16000配方成顶点式,利用二次函数的性质求解可得.
(1)
销售单价(元) | |
销售量(件) | _-10x+800 |
销售玩具获得利润(元) | -10x2+1000x-16000 |
(2)解:由题意得,-10x2+1000x-16000=8000,解得
所以,该玩具销售单价应定为40元或60元.
(3)∵
所以,当x=50时,w最大,为9000,即当定价50元时,商场销售该品牌玩具获得的利润最大,为9000元.
科目:初中数学 来源: 题型:
【题目】我市某楼盘准备以每平方米15000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米12150元的均价开盘销售
求平均每次下调的百分率.
某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:
打折销售;不打折,一次性送装修费每平方米250元.
试问哪种方案更优惠?比另外一种方案优惠多少元?不考虑其他因素
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)B点坐标为 ,并求抛物线的解析式;
(2)求线段PC长的最大值;
(3)若△PAC为直角三角形,直接写出此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”,记为n= 其中,且x、y为整数
请任意写出两个“极数”;
猜想任意一个“极数”是否是99的倍数,请说明理由;
如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记写出三个满足是完全平方数的只需直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,等腰△OBC的边OB在x轴上,OB=CB,OB边上的高CA与OC边上的高BE相交于点D,连接OD,AB=,∠CBO=45°,在直线BE上求点M,使△BMC与△ODC相似,则点M的坐标是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为,动点从点出发,以的速度沿着边运动,到达点停止运动;另一动点同时从点出发,以的速度沿着边向点运动,到达点停止运动.设点的运动时间为单位:,的面积为单位:,则与的函数关系的大致图象为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】元旦期间,某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.
(1)若房价定为200元时,求宾馆每天的利润;
(2)房价定为多少时,宾馆每天的利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com