精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知A(2,0)、B(3,1)、C(1,3).

(1)画出ABC沿x轴负方向平移2个单位后得到的△A1B1C1,并写出B1的坐标   

(2)以A1点为旋转中心,将△A1B1C1逆时针方向旋转90°得△A1B2C2,画出△A1B2C2,并写出C2的坐标   

(3)直接写出过B、B1、C2三点的圆的圆心坐标为   

【答案】(1)(1,1);(2)(﹣3,﹣1);(3)(2,﹣6).

【解析】

(1)根据平移变换的定义和性质作图可得;
(2)根据旋转变换的定义和性质作图可得;
(3)作B1C2BB1的中垂线,交点即为所求点.

解:(1)如图所示,△A1B1C1即为所求,其中B1的坐标为(1,1),

故答案为:(1,1);

(2)如图所示,△A1B2C2即为所求,其中C2的坐标为(﹣3,﹣1),

故答案为:(﹣3,﹣1).

(3)如图所示,过B、B1、C2三点的圆的圆心P的坐标为(2,﹣6),

故答案为:(2,﹣6).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠ABM90°,⊙O分别切ABBM于点DEAC切⊙O于点F,交BM于点CCB不重合).

1)用直尺和圆规作出AC(保留作图痕迹,不写作法);

2)若⊙O半径为1AD4,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,D、E分别是AB,AC的中点,作∠B的角平分线

(1)如图1,若∠B的平分线恰好经过点E,猜想△ABC是怎样的特殊三角形,并说明理由;

(2)如图2,若∠B的平分线交线段DE于点F,已知AB=8,BC=10,求EF的长度;

(3)若∠B的平分线交直线DE于点F,直接写出AB、BC、EF三者之间的数量关系。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子里装有3个黑球和若干白球,它们除颜色外都相同.在不允许将球倒出来数的前提下,小明为估计其中白球数,采用如下办法:随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色,不断重复上述过程.小明共摸100次,其中20次摸到黑球.根据上述数据,小明估计口袋中白球大约有( )

A. 10B. 12 C. 15 D. 18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EBC上的一点,连结AE,作BF⊥AE,垂足为H,CDF,CG∥AE,BFG.

求证:(1CG=BH;(2FC2=BF·GF;(3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O不重合,∠BAC25°,则∠DCA的度数(  )

A.35°B.40°C.45°D.65°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+ca≠0)过点A10),B30)两点,与y轴交于点COC3

1)求抛物线的解析式及顶点D的坐标;

2)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;

3)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一辆轿车在经过某路口的感应线BC处时,悬臂灯杆上的电子警察拍摄到两张照片,两感应线之间距离BC6.2m,在感应线BC两处测得电子警察A的仰角分别为∠ABD45°,∠ACD28°.求电子警察安装在悬臂灯杆上的高度AD的长.(结果精确到0.1米)(参考数据:sin28°0.47cos28°0.88tan28°0.53

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:

次数

1

2

3

4

5

6

7

8

9

10

黑棋数

1

3

0

2

3

4

2

1

1

3

根据以上数据,估算袋中的白棋子数量为( )

A. 60 B. 50 C. 40 D. 30

查看答案和解析>>

同步练习册答案