【题目】如图,△ABC中,AB=8,AC=2,∠BAC的外角平分线交BC延长线于点E,BD⊥AE于D,若AE=AC,则AD的长为______.
【答案】3
【解析】
延长AD至点G,使DG=AD,连接BG,延长BA至F,根据垂直平分线的性质可得BA=BG=8,然后根据等边对等角、角平分线的定义和平行线的判定证出AC∥GB,从而得出∠ACE=∠GBE,再根据等边对等角和等角对等边可证GB=GE=8,最后根据DG+AD=GE-AE即可求出结论.
解:延长AD至点G,使DG=AD,连接BG,延长BA至F
∴BD垂直平分AG
∴BA=BG=8
∴∠BAG=∠G
∵∠BAG=∠EAF,∠BAC的外角平分线交BC延长线于点E,
∴∠EAF=∠G,∠CAE=∠EAF,
∴∠G=∠CAE
∴AC∥GB
∴∠ACE=∠GBE
∵AE=AC=2
∴∠ACE=∠E
∴∠GBE=∠E
∴GB=GE=8
∵DG+AD=GE-AE
∴2AD=6
∴AD=3
故答案为3.
科目:初中数学 来源: 题型:
【题目】图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的序号是___.①当x=3时,EC<EM;②当y=9时,EC>EM③当x增大时,ECCF的值增大;④当y增大时,BEDF的值不变。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A在反比例函数y=(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE的面积为4,则k=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知,在中,,求作的内心,以下甲乙两同学的做法:
甲:如图1
①作垂直平分线
②作的垂直平分线
③交于点
则点即为所求
乙:如图2
①作的角平分线
②作的垂直平分线EF
③交于点
则点即为所求
甲同学的做法__________;乙同学的做法__________(填写正确或不正确)
(2)如图3中, ,
①用直尺和圆规在的内部作射线,使(不写作法,保留痕迹)
②若①中的射线交于点,求的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列有规律的算式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,13+23+33+43+53=225,…,探究并运用其规律计算:113+123+133+143+153+163+173+183+193+203的结果可表示为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线:(m>0)的顶点为M,交y轴于点G.
(1)如图,若点G坐标为(0,)
①直接写出抛物线解析式;
②点Q在y轴上,将线段QM绕点Q逆时针旋转90°得线段QN,若点N恰好落在抛物线上,求点Q的坐标.
(2) 探究: 将抛物线沿唯一的定直线x=a对称得抛物线,记抛物线交y轴于点P (0,-2m),求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与反比例函数的图象交于A(-1,3),B(3,)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.
(1)求一次函数及反比例函数的解析式;
(2)若点P在直线上,且S△ACP=2S△BDP,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是_____°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com